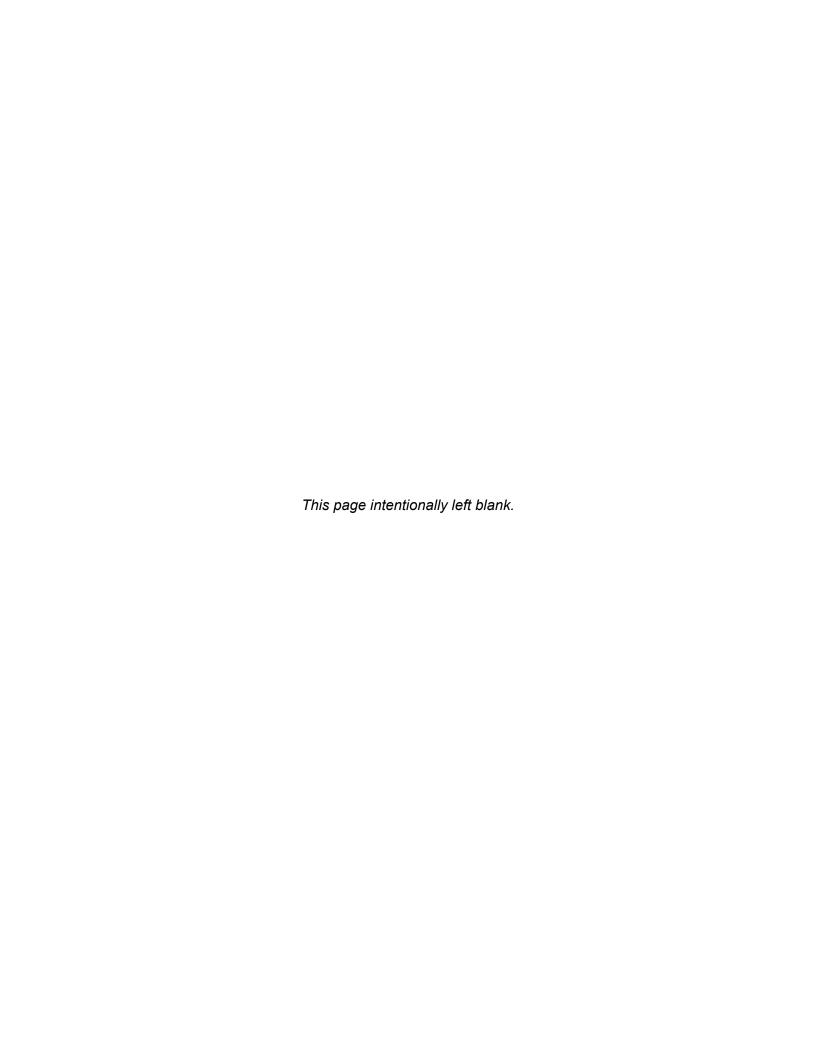
# 

**KC-46A MAIN OPERATING BASE NO.6 BEDDOWN** 



Final


**Environmental Impact Statement (EIS)** 

# **KC-46A Main Operating** Base #6 (MOB 6) Beddown

Volume II - Appendices (Appendix B)

November 2023







#### **Table of Contents**

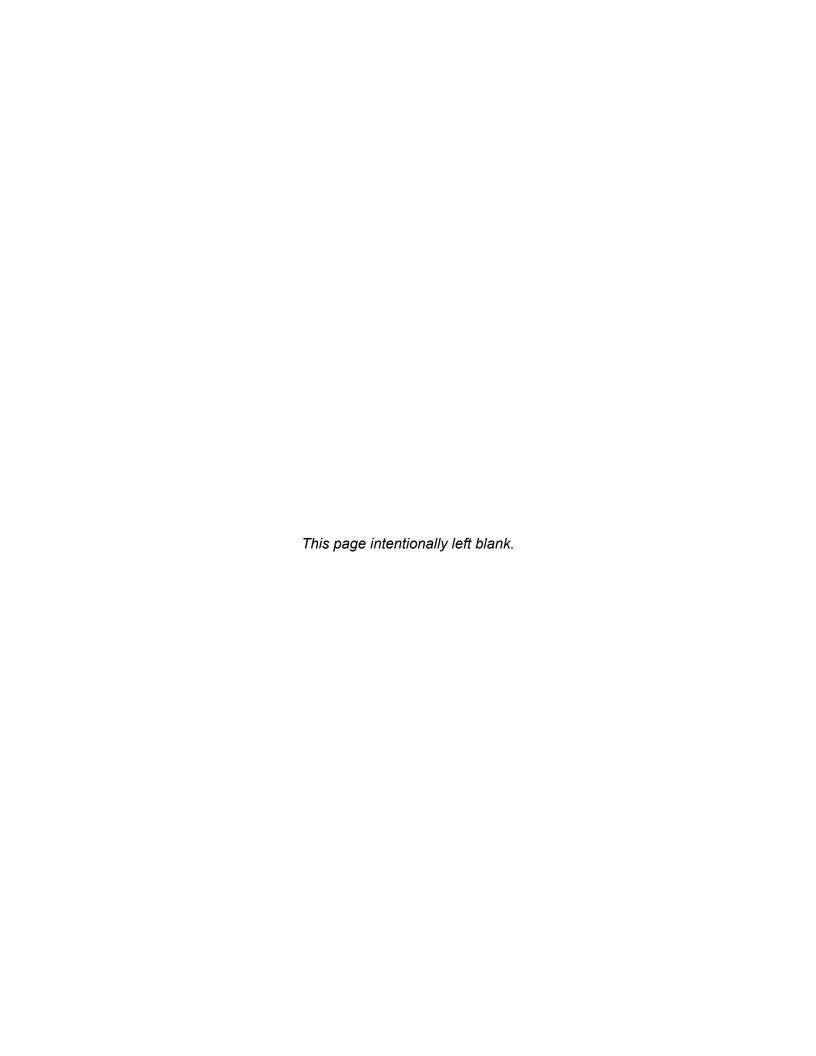
| \pr | endi       | x B: | Air Quality Analysis Supporting Documentation                              | B-1    |
|-----|------------|------|----------------------------------------------------------------------------|--------|
| В   | 3.1        | Alte | ernative 1 – ACAM Report Record of Air Analysis (ROAA)                     | B-2    |
| В   | 3.2        | Alte | ernative 1 – Detail ACAM Report for the Beddown of 24 KC-46A PAA at MacDi  | ill    |
| Α   | ŀFΒ        |      |                                                                            | B-5    |
|     | B.2.       | 1    | General Information                                                        | B-5    |
|     | B.2.       | 2    | Construction/Demolition                                                    | B-6    |
|     | B.2.       | 3    | Construction/Demolition                                                    | . B-16 |
|     | B.2.       | 4    | Construction/Demolition                                                    | . B-21 |
|     | B.2.       | 5    | Personnel                                                                  | B-31   |
|     | B.2.       | 6    | Heating                                                                    | . B-33 |
|     | B.2.       | 7    | Paint Booth                                                                | . B-34 |
|     | B.2.       | 8    | Aircraft                                                                   | . B-35 |
|     | B.2.       | 9    | Aircraft                                                                   | . B-40 |
|     | B.2.       | 10   | Aircraft                                                                   | . B-45 |
|     | B.2.       | 11   | Aircraft                                                                   | . B-49 |
| В   | 3.3        | Alte | ernative 2 – ACAM Report ROAA                                              | . B-54 |
|     | 8.4<br>.FB |      | ernative 2 – Detail ACAM Report for the Beddown of 24 KC-46A PAA at Fairch |        |
|     | B.4.       | 1    | General Information                                                        | B-57   |
|     | B.4.       | 2    | Aircraft                                                                   | B-58   |
|     | B.4.       | 3    | Aircraft                                                                   | B-63   |
|     | B.4.       | 4    | Construction/Demolition                                                    | B-68   |
|     | B.4.       | 5    | Construction/Demolition                                                    | B-78   |
|     | B.4.       | 6    | Construction/Demolition                                                    | B-83   |
|     | B.4.       | 7    | Personnel                                                                  | B-92   |
|     | B.4.       | 8    | Heating                                                                    | B-94   |
|     | B.4.       | 9    | Paint Booth                                                                |        |
|     | B.4.       |      | Aircraft                                                                   |        |
|     | B.4.       |      |                                                                            | B-101  |





### **Figures**

None


#### **Tables**

None



B

Air Quality Analysis
Supporting
Documentation





#### **Appendix B: Air Quality Analysis Supporting Documentation**

The emission factors presented in this appendix are imbedded within the United States Department of the Air Force (DAF) Air Conformity Applicability Model (ACAM) and come from the following DAF documents: (1) Air Emissions Guide for Air Force Stationary Sources, Methods for Estimating Emissions of Air Pollutants for Stationary Sources at U.S. Air Force Installations, Air Force Civil Engineer Center (June 2020), and (2) Air Emissions Guide for Air Force Mobile Sources, Methods for Estimating Emissions of Air Pollutants for Mobile Sources at U.S. Air Force Installations, Air Force Civil Engineering Center (June 2020).

The following on-road vehicle type abbreviations and their definitions are used throughout this appendix.

LDGV: Light-Duty Gasoline Vehicle (Passenger Cars)

LDGT: Light-Duty Gasoline Truck (0–8,500 Pounds Gross Vehicle Weight Rating [GVWR])

HDGV: Heavy-Duty Gasoline Vehicle (8,501 to > 60,000 Pounds GVWR)

LDDV: Light-Duty Diesel Vehicle (Passenger Cars)

LDDT: Light-Duty Diesel Truck (0–8,500 Pounds GVWR)

HDDV: Heavy-Duty Diesel Vehicle (8,501 to > 60,000 Pounds GVWR)

MC: Motorcycles (Gasoline)





#### B.1 Alternative 1 – ACAM Report Record of Air Analysis (ROAA)

**1. General Information:** The DAF's ACAM was used to perform an analysis to assess the potential air quality impacts associated with the action in accordance with Air Force Manual 32-7002, *Environmental Compliance and Pollution Prevention*; the Environmental Impact Analysis Process (EIAP; 32 CFR 989); and the General Conformity Rule (GCR; 40 CFR 93 Subpart B). This report provides a summary of the ACAM analysis.

a. Action Location:

Base: MACDILL AFB

State: Florida

County(s): Hillsborough

Regulatory Area(s): NOT IN A REGULATORY AREA

b. Action Title: KC-46A Main Operating Base #6 Beddown

c. Project Number/s (if applicable): Alternative 1: KC-46A Beddown at MacDill AFB, Florida

d. Projected Action Start Date: 10/2025

e. Action Description:

Alternative 1 would base 24 KC-46A aircraft in two squadrons of 12 PAA at MacDill AFB as an active duty, Continental United States location for the KC-46A MOB 6 beddown. The KC-46A beddown would occur in two stages: beddown and operational. The beddown stage would involve construction/retrofit of required facilities, infrastructure, and prepared surfaces, which includes renovation, alteration, and demolition. The beddown stage would also include preparing support facilities for new personnel and students to support the mission. The operational stage would involve conducting day-to-day activities (e.g., operational missions, maintenance) at the installation, including flight operations and training in the existing regional airspace.

f. Point of Contact:

Name: Carolyn Hein Contractor Organization: HDR

Email:

**Phone Number:** (484) 612-1100

**2. Air Impact Analysis:** Based on the attainment status at the action location, the requirements of the General Conformity Rule are:

|   | applicable       |  |
|---|------------------|--|
| X | _ not applicable |  |

Total net direct and indirect emissions associated with the action were estimated through ACAM on a calendar-year basis for the start of the action through achieving "steady state" (i.e., net gain/loss upon action fully implemented) emissions. The ACAM analysis used the latest and most accurate emission estimation techniques available; all algorithms, emission factors, and methodologies used are described in detail in the DAF's *Air Emissions Guide for Air Force Stationary Sources*, *Air Emissions Guide for Air Force Mobile Sources*, and *Air Emissions Guide for Air Force Transitory Sources*.





"Insignificance Indicators" were used in the analysis to provide an indication of the significance of potential impacts to air quality based on current ambient air quality relative to the National Ambient Air Quality Standards (NAAQSs). These insignificance indicators are the 250 ton/year Prevention of Significant Deterioration (PSD) major source threshold for actions occurring in areas that are "Clearly Attainment" (i.e., not within 5 percent of any NAAQS), and the GCR *de minimis* values (25 ton/year for lead and 100 ton/year for all other criteria pollutants) for actions occurring in areas that are "Near Nonattainment" (i.e., within 5 percent of any NAAQS). These indicators do not define a significant impact; however, they do provide a threshold to identify actions that are insignificant. Any action with net emissions below the insignificance indicators for all criteria pollutant is considered so insignificant that the action will not cause or contribute to an exceedance on one or more NAAQSs. For further detail on insignificance indicators see Chapter 4 of the *Air Force Air Quality Environmental Impact Analysis Process (EIAP) Guide, Volume II – Advanced Assessments*.

The action's net emissions for every year through achieving steady state were compared against the insignificance indicator and are summarized below.

#### **Analysis Summary:**

#### 2025

| 2020               |                                                     |                    |                        |  |
|--------------------|-----------------------------------------------------|--------------------|------------------------|--|
| Pollutant          | Pollutant Action Emissions INSIGNIFICANCE INDICATOR |                    |                        |  |
|                    | (ton/yr)                                            | Indicator (ton/yr) | Exceedance (Yes or No) |  |
| NOT IN A REGULATOR | Y AREA                                              |                    |                        |  |
| VOC                | 0.441                                               | 250                | No                     |  |
| NOx                | 2.350                                               | 250                | No                     |  |
| CO                 | 3.528                                               | 250                | No                     |  |
| SOx                | 0.008                                               | 250                | No                     |  |
| PM 10              | 41.342                                              | 250                | No                     |  |
| PM 2.5             | 0.090                                               | 250                | No                     |  |
| Pb                 | 0.000                                               | 25                 | No                     |  |
| NH3                | 0.002                                               | 250                | No                     |  |
| CO2e               | 789.5                                               | _                  | _                      |  |

#### 2026

| Pollutant          | Action Emissions | INSIGNIFICANCE INDICATOR |                    |  |
|--------------------|------------------|--------------------------|--------------------|--|
|                    | (ton/yr)         | Indicator (ton/yr)       | Exceedance (Yes or |  |
|                    |                  |                          | No)                |  |
| NOT IN A REGULATOR | Y AREA           |                          |                    |  |
| VOC                | 1.058            | 250                      | No                 |  |
| NOx                | 5.924            | 250                      | No                 |  |
| CO                 | 8.660            | 250                      | No                 |  |
| SOx                | 0.018            | 250                      | No                 |  |
| PM 10              | 13.732           | 250                      | No                 |  |
| PM 2.5             | 0.233            | 250                      | No                 |  |
| Pb                 | 0.000            | 25                       | No                 |  |
| NH3                | 0.007            | 250                      | No                 |  |
| CO2e               | 1772.9           |                          |                    |  |





#### 2027

| Pollutant          | Action Emissions | INSIGNIFICANCE INDICATOR |                        |  |
|--------------------|------------------|--------------------------|------------------------|--|
|                    | (ton/yr)         | Indicator (ton/yr)       | Exceedance (Yes or No) |  |
| NOT IN A REGULATOR | Y AREA           |                          |                        |  |
| VOC                | 1.018            | 250                      | No                     |  |
| NOx                | 5.744            | 250                      | No                     |  |
| CO                 | 8.325            | 250                      | No                     |  |
| SOx                | 0.017            | 250                      | No                     |  |
| PM 10              | 0.228            | 250                      | No                     |  |
| PM 2.5             | 0.227            | 250                      | No                     |  |
| Pb                 | 0.000            | 25                       | No                     |  |
| NH3                | 0.006            | 250                      | No                     |  |
| CO2e               | 1691.6           |                          |                        |  |

#### 2028

| 2020                                                |          |                    |                        |  |  |
|-----------------------------------------------------|----------|--------------------|------------------------|--|--|
| Pollutant Action Emissions INSIGNIFICANCE INDICATOR |          |                    | ICE INDICATOR          |  |  |
|                                                     | (ton/yr) | Indicator (ton/yr) | Exceedance (Yes or No) |  |  |
| NOT IN A REGULATOR                                  | Y AREA   |                    |                        |  |  |
| VOC                                                 | 12.297   | 250                | No                     |  |  |
| NOx                                                 | 39.685   | 250                | No                     |  |  |
| CO                                                  | 6.441    | 250                | No                     |  |  |
| SOx                                                 | 1.038    | 250                | No                     |  |  |
| PM 10                                               | -1.698   | 250                | No                     |  |  |
| PM 2.5                                              | -0.601   | 250                | No                     |  |  |
| Pb                                                  | 0.000    | 25                 | No                     |  |  |
| NH3                                                 | 0.013    | 250                | No                     |  |  |
| CO2e                                                | 4456.8   |                    |                        |  |  |

2029 - (Steady State)

| 2029 - (Steady State) |                  |                          |                    |  |  |
|-----------------------|------------------|--------------------------|--------------------|--|--|
| Pollutant             | Action Emissions | INSIGNIFICANCE INDICATOR |                    |  |  |
|                       | (ton/yr)         | Indicator (ton/yr)       | Exceedance (Yes or |  |  |
|                       |                  |                          | No)                |  |  |
| NOT IN A REGULATOR    | Y AREA           |                          |                    |  |  |
| VOC                   | 10.418           | 250                      | No                 |  |  |
| NOx                   | 141.510          | 250                      | No                 |  |  |
| CO                    | 0.768            | 250                      | No                 |  |  |
| SOx                   | 4.101            | 250                      | No                 |  |  |
| PM 10                 | -7.478           | 250                      | No                 |  |  |
| PM 2.5                | -3.085           | 250                      | No                 |  |  |
| Pb                    | 0.000            | 25                       | No                 |  |  |
| NH3                   | 0.032            | 250                      | No                 |  |  |
| CO2e                  | 12750.5          |                          |                    |  |  |

None of estimated annual net emissions associated with this action are above the insignificance indicators, indicating no significant impact to air quality. Therefore, the action would not cause or contribute to an exceedance on one or more NAAQSs. No further air assessment is needed.

| Cungastano               | 10/27/2022 |
|--------------------------|------------|
| Carolyn Hein, Contractor |            |





## B.2 Alternative 1 – Detail ACAM Report for the Beddown of 24 KC-46A PAA at MacDill AFB

#### **B.2.1** General Information

- Action Location

Base: MACDILL AFB

State: Florida

County(s): Hillsborough

Regulatory Area(s): NOT IN A REGULATORY AREA

- Action Title: KC-46A Main Operating Base #6 Beddown

- Project Number/s (if applicable): Alternative 1: KC-46A Beddown at MacDill AFB, Florida

- Projected Action Start Date: 10 / 2025

#### - Action Purpose and Need:

The purpose of the Proposed Action is to recapitalize aging tanker aircraft (KC-135 Stratotanker) currently used by the Department of the Air Force with the KC-46A model to better address current and future mission requirements, offer expanded capability, and provide life-cycle cost savings in comparison to continued operation of existing KC-135 Stratotanker.

The Proposed Action to establish Main Operating Base #6 (MOB 6) is intended to provide a fully capable, combat operational KC-46A aerial refueling force at the MOB 6 location(s) to accomplish aerial refueling and related missions. The mission-ready KC-46A squadrons would allow immediate and effective employment in exercises, peacekeeping operations, contingencies, and combat. Bedding down and operating the KC-46A would allow DAF to maintain combat capability and mission readiness as U.S. military resources commit to missions throughout the world.

The MOB 6 beddown of the KC-46A is needed because the KC-46A would provide mission essential capabilities currently lacking in the existing tanker fleet, resulting in fully capable, combat-operational tanker force to accomplish aerial refueling and related worldwide missions. Additional capabilities include receiver capability, night vision, multi-point refueling, connectivity to command and control assets, and defensive protection.

#### - Action Description:

Alternative 1 would base 24 KC-46A aircraft in two squadrons of 12 Primary Aerospace Vehicle Authorization (PAA) at MacDill AFB as an active duty, continental United States location for the KC-46A Main Operating Base #6 (MOB 6) beddown. The KC-46A beddown would occur in two stages: a beddown stage and an operational stage. The beddown stage would involve construction/retrofit of required facilities, infrastructure, and prepared surfaces, which includes renovation, alteration, and demolition. The beddown stage would also include preparing support facilities for new personnel and students to support the mission. The operational stage would involve conducting day-to-day activities (e.g., operational missions, maintenance) at the installation, including flight operations and training in the existing regional airspace.

#### - Point of Contact

Name: Carolyn Hein





Title: Contractor Organization: HDR EOC

Email:

**Phone Number:** (484) 612-1100

- Activity List:

| 7.000                                                                     | Notivity Eloti            |                                                               |  |  |  |
|---------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------|--|--|--|
| Activity Type                                                             |                           | Activity Title                                                |  |  |  |
| 2.                                                                        | Construction / Demolition | New Facility Construction                                     |  |  |  |
| 3.                                                                        | Construction / Demolition | Facility Renovations                                          |  |  |  |
| 4.                                                                        | Construction / Demolition | Facility and Airfield Improvements                            |  |  |  |
| 5.                                                                        | Personnel                 | Addition of Personnel                                         |  |  |  |
| 6.                                                                        | Heating                   | Heating of New Facilities                                     |  |  |  |
| 7.                                                                        | Paint Booth               | KC-46A Maintenance Hangar Paint Booth                         |  |  |  |
| 8. Aircraft Beddown of 24 KC-46A Aircraft at MacDill AFB, Florida - LTOs, |                           | Beddown of 24 KC-46A Aircraft at MacDill AFB, Florida - LTOs, |  |  |  |
|                                                                           |                           | APU, Engine Testing                                           |  |  |  |
| 9.                                                                        | Aircraft                  | Remove 24 KC-135R Aircraft from MacDill AFB, Florida - LTOs,  |  |  |  |
|                                                                           |                           | APU, Engine Testing                                           |  |  |  |
| 10.                                                                       | Aircraft                  | Beddown of 24 KC-46A Aircraft at MacDill AFB, Florida - TGOs  |  |  |  |
| 11.                                                                       | Aircraft                  | Remove 24 KC-135R Aircraft from MacDill AFB, Florida - TGOs   |  |  |  |

Emission factors and air emission estimating methods come from the United States Air Force's Air Emissions Guide for Air Force Stationary Sources, Air Emissions Guide for Air Force Mobile Sources, and Air Emissions Guide for Air Force Transitory Sources.

#### **B.2.2** Construction/Demolition

B.2.2.1 General Information & Timeline Assumptions

- Activity Location

County: Hillsborough

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: New Facility Construction

#### - Activity Description:

Construction of New Facilities:

DASH-21 Facility (19,656 square feet)

High Bay Supply/Bulk Storage Warehouse (5,798 square feet)

Assumed no materials are required to be hauled on- or off-site due to site grading; excavated spoils will be used on-site. Conservatively assumed all site grading for new facility construction is done in FY2025.

Also assumed the following: (1) no new emergency generator(s), or if any were needed for new facilities, their emissions would be offset by removing a generator(s) that was supporting KC-135 operations/facilities; (2) for special vehicles and non-road combustion equipment needed to support KC-46A operations/facilities, their operation/emissions would be equally offset by eliminating or reusing vehicles and non-road equipment that were supporting KC-135 operations/facilities; (3) KC-46A deicing, fuel cell maintenance, composite repair, NDI testing, and fuel storage/dispensing operations/emissions would be equally offset by eliminating those corresponding operations/emissions supporting the KC-135 operations/facilities.





- Activity Start Date Start Month: 10

Start Month: 2025

- Activity End Date

Indefinite: False End Month: 9 End Month: 2028

- Activity Emissions:

| - Activity Eliliosiciis. |                        |  |  |
|--------------------------|------------------------|--|--|
| Pollutant                | Total Emissions (TONs) |  |  |
| VOC                      | 1.169184               |  |  |
| SO <sub>x</sub>          | 0.016317               |  |  |
| NO <sub>x</sub>          | 4.830554               |  |  |
| CO                       | 7.314629               |  |  |
| PM 10                    | 1.939042               |  |  |

| Pollutant         | Total Emissions (TONs) |
|-------------------|------------------------|
| PM 2.5            | 0.166124               |
| Pb                | 0.000000               |
| NH <sub>3</sub>   | 0.004882               |
| CO <sub>2</sub> e | 1572.4                 |
|                   |                        |

B.2.2.2 Site Grading Phase

B.2.2.2.1 Site Grading Phase Timeline Assumptions

- Phase Start Date

Start Month: 10 Start Quarter: 1 Start Year: 2025

- Phase Duration

Number of Month: 3 Number of Days: 0

#### B.2.2.2.2 Site Grading Phase Assumptions

- General Site Grading Information

Area of Site to be Graded (ft²): 25454 Amount of Material to be Hauled On-Site (yd³): 0 Amount of Material to be Hauled Off-Site (yd³): 0

- Site Grading Default Settings

Default Settings Used: Yes
Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

| Equipment Name                         | Number Of<br>Equipment | Hours Per Day |
|----------------------------------------|------------------------|---------------|
| Graders Composite                      | 1                      | 6             |
| Other Construction Equipment Composite | 1                      | 8             |
| Rubber Tired Dozers Composite          | 1                      | 6             |
| Tractors/Loaders/Backhoes Composite    | 1                      | 7             |

- Vehicle Exhaust

Average Hauling Truck Capacity (yd³): 20 (default)
Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)





|      | LDGV | LDGT | HDGV | LDDV | LDDT | HDDV   | MC |
|------|------|------|------|------|------|--------|----|
| POVs | 0    | 0    | 0    | 0    | 0    | 100.00 | 0  |

#### - Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

|      | LDGV  | LDGT  | HDGV | LDDV | LDDT | HDDV | MC |
|------|-------|-------|------|------|------|------|----|
| POVs | 50.00 | 50.00 | 0    | 0    | 0    | 0    | 0  |

#### B.2.2.2.3 Site Grading Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

| Construction Exhaust Emission ractors (ib/nour) (default) |                 |                 |                 |        |        |        |        |                   |  |  |
|-----------------------------------------------------------|-----------------|-----------------|-----------------|--------|--------|--------|--------|-------------------|--|--|
| Graders Composite                                         |                 |                 |                 |        |        |        |        |                   |  |  |
|                                                           | VOC             | SO <sub>x</sub> | NO <sub>x</sub> | CO     | PM 10  | PM 2.5 | CH₄    | CO₂e              |  |  |
| Emission Factors                                          | 0.0676          | 0.0014          | 0.3314          | 0.5695 | 0.0147 | 0.0147 | 0.0061 | 132.89            |  |  |
| Other Construction Equipment Composite                    |                 |                 |                 |        |        |        |        |                   |  |  |
|                                                           | VOC             | SOx             | NOx             | CO     | PM 10  | PM 2.5 | CH₄    | CO₂e              |  |  |
| Emission Factors                                          | 0.0442          | 0.0012          | 0.2021          | 0.3473 | 0.0068 | 0.0068 | 0.0039 | 122.60            |  |  |
| Rubber Tired Doz                                          | ers Compo       | osite           |                 |        |        |        |        |                   |  |  |
|                                                           | VOC             | SO <sub>x</sub> | NO <sub>x</sub> | CO     | PM 10  | PM 2.5 | CH₄    | CO₂e              |  |  |
| Emission Factors                                          | 0.1671          | 0.0024          | 1.0824          | 0.6620 | 0.0418 | 0.0418 | 0.0150 | 239.45            |  |  |
| Tractors/Loaders/                                         | <b>Backhoes</b> | Composit        | te              |        |        |        |        |                   |  |  |
|                                                           | VOC             | SO <sub>x</sub> | NO <sub>x</sub> | CO     | PM 10  | PM 2.5 | CH₄    | CO <sub>2</sub> e |  |  |
| Emission Factors                                          | 0.0335          | 0.0007          | 0.1857          | 0.3586 | 0.0058 | 0.0058 | 0.0030 | 66.872            |  |  |

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

|      | VOC     | SO <sub>x</sub> | NO <sub>x</sub> | CO      | PM 10   | PM 2.5  | Pb | NH <sub>3</sub> | CO <sub>2</sub> e |
|------|---------|-----------------|-----------------|---------|---------|---------|----|-----------------|-------------------|
| LDGV | 000.282 | 000.002         | 000.207         | 003.392 | 000.006 | 000.005 |    | 000.023         | 00341.791         |
| LDGT | 000.376 | 000.003         | 000.373         | 004.889 | 000.007 | 000.006 |    | 000.024         | 00439.705         |
| HDGV | 000.832 | 000.005         | 000.964         | 016.217 | 000.016 | 000.014 |    | 000.046         | 00814.851         |
| LDDV | 000.084 | 000.003         | 000.127         | 002.822 | 000.004 | 000.004 |    | 800.000         | 00334.379         |
| LDDT | 000.227 | 000.004         | 000.365         | 004.850 | 000.007 | 000.006 |    | 800.000         | 00473.628         |
| HDDV | 000.423 | 000.014         | 004.175         | 001.653 | 000.176 | 000.162 |    | 000.028         | 01559.331         |
| MC   | 003.040 | 000.003         | 000.626         | 013.017 | 000.026 | 000.023 |    | 000.052         | 00392.775         |

#### B.2.2.2.4 Site Grading Phase Formula(s)

#### - Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$ 

PM10<sub>FD</sub>: Fugitive Dust PM 10 Emissions (TONs)

20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)

ACRE: Total acres (acres)

WD: Number of Total Work Days (days) 2000: Conversion Factor pounds to tons

#### - Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$ 

CEE<sub>POL</sub>: Construction Exhaust Emissions (TONs)

NE: Number of Equipment

WD: Number of Total Work Days (days) H: Hours Worked per Day (hours)





EF<sub>POL</sub>: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

#### - Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$ 

VMT<sub>VE</sub>: Vehicle Exhaust Vehicle Miles Travel (miles) HA<sub>OnSite</sub>: Amount of Material to be Hauled On-Site (yd³) HA<sub>OffSite</sub>: Amount of Material to be Hauled Off-Site (yd³)

HC: Average Hauling Truck Capacity (yd³)

(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POL</sub>: Vehicle Emissions (TONs)

VMT<sub>VE</sub>: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF<sub>POL</sub>: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons

#### - Worker Trips Emissions per Phase

VMT<sub>WT</sub> = WD \* WT \* 1.25 \* NE

VMT<sub>WT</sub>: Worker Trips Vehicle Miles Travel (miles)

WD: Number of Total Work Days (days)

WT: Average Worker Round Trip Commute (mile)

1.25: Conversion Factor Number of Construction Equipment to Number of Works

NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POL</sub>: Vehicle Emissions (TONs)

VMT<sub>WT</sub>: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF<sub>POL</sub>: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons

#### B.2.2.3 Trenching/Excavating Phase

#### B.2.2.3.1 Trenching / Excavating Phase Timeline Assumptions

#### - Phase Start Date

Start Month: 10 Start Quarter: 1 Start Year: 2025

#### - Phase Duration

Number of Month: 4 Number of Days: 0





#### B.2.2.3.2 Trenching / Excavating Phase Assumptions

- General Trenching/Excavating Information

Area of Site to be Trenched/Excavated (ft²): 25454 Amount of Material to be Hauled On-Site (yd³): 0 Amount of Material to be Hauled Off-Site (yd³): 0

- Trenching Default Settings

Default Settings Used: Yes
Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

| Equipment Name                               | Number Of<br>Equipment | Hours Per Day |
|----------------------------------------------|------------------------|---------------|
| Excavators Composite                         | 2                      | 8             |
| Other General Industrial Equipment Composite | 1                      | 8             |
| Tractors/Loaders/Backhoes Composite          | 1                      | 8             |

#### - Vehicle Exhaust

Average Hauling Truck Capacity (yd³): 20 (default)
Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

|      | LDGV | LDGT | HDGV | LDDV | LDDT | HDDV   | MC |
|------|------|------|------|------|------|--------|----|
| POVs | 0    | 0    | 0    | 0    | 0    | 100.00 | 0  |

#### - Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

|      | LDGV  | LDGT  | HDGV | LDDV | LDDT | HDDV | MC |
|------|-------|-------|------|------|------|------|----|
| POVs | 50.00 | 50.00 | 0    | 0    | 0    | 0    | 0  |

#### B.2.2.3.3 Trenching / Excavating Phase Emission Factor(s)

#### - Construction Exhaust Emission Factors (lb/hour) (default)

| - Constituction Ex                     | Construction Exhaust Emission ractors (ib/nour) (derault) |                 |                 |        |        |        |                 |                   |  |  |  |
|----------------------------------------|-----------------------------------------------------------|-----------------|-----------------|--------|--------|--------|-----------------|-------------------|--|--|--|
| Graders Composite                      |                                                           |                 |                 |        |        |        |                 |                   |  |  |  |
| _                                      | VOC                                                       | SOx             | NOx             | СО     | PM 10  | PM 2.5 | CH <sub>4</sub> | CO <sub>2</sub> e |  |  |  |
| Emission Factors                       | 0.0676                                                    | 0.0014          | 0.3314          | 0.5695 | 0.0147 | 0.0147 | 0.0061          | 132.89            |  |  |  |
| Other Construction Equipment Composite |                                                           |                 |                 |        |        |        |                 |                   |  |  |  |
|                                        | VOC                                                       | SOx             | NOx             | СО     | PM 10  | PM 2.5 | CH <sub>4</sub> | CO <sub>2</sub> e |  |  |  |
| Emission Factors                       | 0.0442                                                    | 0.0012          | 0.2021          | 0.3473 | 0.0068 | 0.0068 | 0.0039          | 122.60            |  |  |  |
| Rubber Tired Doze                      | ers Compo                                                 | osite           |                 |        |        |        |                 |                   |  |  |  |
|                                        | VOC                                                       | SOx             | NOx             | СО     | PM 10  | PM 2.5 | CH <sub>4</sub> | CO <sub>2</sub> e |  |  |  |
| Emission Factors                       | 0.1671                                                    | 0.0024          | 1.0824          | 0.6620 | 0.0418 | 0.0418 | 0.0150          | 239.45            |  |  |  |
| Tractors/Loaders/                      | <b>Backhoes</b>                                           | Composit        | te              |        |        |        |                 |                   |  |  |  |
|                                        | VOC                                                       | SO <sub>x</sub> | NO <sub>x</sub> | CO     | PM 10  | PM 2.5 | CH₄             | CO <sub>2</sub> e |  |  |  |
| Emission Factors                       | 0.0335                                                    | 0.0007          | 0.1857          | 0.3586 | 0.0058 | 0.0058 | 0.0030          | 66.872            |  |  |  |

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

|      | VOC     | SO <sub>x</sub> | NO <sub>x</sub> | CO      | PM 10   | PM 2.5  | Pb | NH <sub>3</sub> | CO <sub>2</sub> e |
|------|---------|-----------------|-----------------|---------|---------|---------|----|-----------------|-------------------|
| LDGV | 000.282 | 000.002         | 000.207         | 003.392 | 000.006 | 000.005 |    | 000.023         | 00341.791         |
| LDGT | 000.376 | 000.003         | 000.373         | 004.889 | 000.007 | 000.006 |    | 000.024         | 00439.705         |
| HDGV | 000.832 | 000.005         | 000.964         | 016.217 | 000.016 | 000.014 |    | 000.046         | 00814.851         |





| LDDV | 000.084 | 000.003 | 000.127 | 002.822 | 000.004 | 000.004 | 800.000 | 00334.379 |
|------|---------|---------|---------|---------|---------|---------|---------|-----------|
| LDDT | 000.227 | 000.004 | 000.365 | 004.850 | 000.007 | 000.006 | 800.000 | 00473.628 |
| HDDV | 000.423 | 000.014 | 004.175 | 001.653 | 000.176 | 000.162 | 000.028 | 01559.331 |
| MC   | 003.040 | 000.003 | 000.626 | 013.017 | 000.026 | 000.023 | 000.052 | 00392.775 |

#### B.2.2.3.4 Trenching / Excavating Phase Formula(s)

#### - Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$ 

PM10<sub>FD</sub>: Fugitive Dust PM 10 Emissions (TONs)

20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)

ACRE: Total acres (acres)

WD: Number of Total Work Days (days) 2000: Conversion Factor pounds to tons

#### - Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$ 

CEE<sub>POL</sub>: Construction Exhaust Emissions (TONs)

NE: Number of Equipment

WD: Number of Total Work Days (days)

H: Hours Worked per Day (hours)

EF<sub>POL</sub>: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

#### - Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$ 

VMT<sub>VE</sub>: Vehicle Exhaust Vehicle Miles Travel (miles) HA<sub>OnSite</sub>: Amount of Material to be Hauled On-Site (yd³) HA<sub>OffSite</sub>: Amount of Material to be Hauled Off-Site (yd³)

HC: Average Hauling Truck Capacity (yd³)

(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POL</sub>: Vehicle Emissions (TONs)

VMT<sub>VE</sub>: Vehicle Exhaust Vehicle Miles Travel (miles)

0.002205: Conversion Factor grams to pounds EF<sub>POL</sub>: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons

#### - Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$ 

VMT<sub>WT</sub>: Worker Trips Vehicle Miles Travel (miles)

WD: Number of Total Work Days (days)

WT: Average Worker Round Trip Commute (mile)

1.25: Conversion Factor Number of Construction Equipment to Number of Works





NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POL</sub>: Vehicle Emissions (TONs)

 $VMT_{VE}$ : Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds  $EF_{POL}$ : Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons

B.2.2.4 Building Construction Phase

B.2.2.4.1 Building Construction Phase Timeline Assumptions

- Phase Start Date

Start Month: 10 Start Quarter: 1 Start Year: 2025

- Phase Duration

Number of Month: 36 Number of Days: 0

#### B.2.2.4.2 Building Construction Phase Assumptions

- General Building Construction Information

Building Category: Office or Industrial

Area of Building (ft²): 25454 Height of Building (ft): 35 Number of Units: N/A

- Building Construction Default Settings

**Default Settings Used:** Yes

Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

| Equipment Name                      | Number Of<br>Equipment | Hours Per Day |
|-------------------------------------|------------------------|---------------|
| Cranes Composite                    | 1                      | 6             |
| Forklifts Composite                 | 2                      | 6             |
| Generator Sets Composite            | 1                      | 8             |
| Tractors/Loaders/Backhoes Composite | 1                      | 8             |
| Welders Composite                   | 3                      | 8             |

#### - Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

|      | LDGV | LDGT | HDGV | LDDV | LDDT | HDDV   | MC |
|------|------|------|------|------|------|--------|----|
| POVs | 0    | 0    | 0    | 0    | 0    | 100.00 | 0  |

#### - Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)





- Worker Trips Vehicle Mixture (%)

|      | LDGV  | LDGT  | HDGV | LDDV | LDDT | HDDV | MC |
|------|-------|-------|------|------|------|------|----|
| POVs | 50.00 | 50.00 | 0    | 0    | 0    | 0    | 0  |

#### - Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

|      | LDGV | LDGT | HDGV | LDDV | LDDT | HDDV   | MC |
|------|------|------|------|------|------|--------|----|
| POVs | 0    | 0    | 0    | 0    | 0    | 100.00 | 0  |

#### B.2.2.4.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

| Construction Exhaust Emission ractors (ib/nour) (default) |          |                 |        |        |        |        |        |                   |  |
|-----------------------------------------------------------|----------|-----------------|--------|--------|--------|--------|--------|-------------------|--|
| Cranes Composite                                          | 9        |                 |        |        |        |        |        |                   |  |
|                                                           | VOC      | SO <sub>x</sub> | NOx    | CO     | PM 10  | PM 2.5 | CH₄    | CO <sub>2</sub> e |  |
| Emission Factors                                          | 0.0680   | 0.0013          | 0.4222 | 0.3737 | 0.0143 | 0.0143 | 0.0061 | 128.77            |  |
| Forklifts Composite                                       |          |                 |        |        |        |        |        |                   |  |
| -                                                         | VOC      | SOx             | NOx    | СО     | PM 10  | PM 2.5 | CH₄    | CO <sub>2</sub> e |  |
| Emission Factors                                          | 0.0236   | 0.0006          | 0.0859 | 0.2147 | 0.0025 | 0.0025 | 0.0021 | 54.449            |  |
| Generator Sets Composite                                  |          |                 |        |        |        |        |        |                   |  |
|                                                           | VOC      | SOx             | NOx    | СО     | PM 10  | PM 2.5 | CH₄    | CO <sub>2</sub> e |  |
| Emission Factors                                          | 0.0287   | 0.0006          | 0.2329 | 0.2666 | 0.0080 | 0.0080 | 0.0025 | 61.057            |  |
| Tractors/Loaders/                                         | Backhoes | Composit        | te     |        |        |        |        |                   |  |
|                                                           | VOC      | SO <sub>x</sub> | NOx    | CO     | PM 10  | PM 2.5 | CH₄    | CO <sub>2</sub> e |  |
| Emission Factors                                          | 0.0335   | 0.0007          | 0.1857 | 0.3586 | 0.0058 | 0.0058 | 0.0030 | 66.872            |  |
| <b>Welders Composi</b>                                    | te       |                 |        |        |        |        |        |                   |  |
| _                                                         | VOC      | SOx             | NOx    | CO     | PM 10  | PM 2.5 | CH₄    | CO <sub>2</sub> e |  |
| Emission Factors                                          | 0.0214   | 0.0003          | 0.1373 | 0.1745 | 0.0051 | 0.0051 | 0.0019 | 25.650            |  |

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

|      | vernois Extradot & Worker Tripo Emission Laters (gramomine) |                 |         |         |         |         |    |                 |                   |  |  |  |
|------|-------------------------------------------------------------|-----------------|---------|---------|---------|---------|----|-----------------|-------------------|--|--|--|
|      | VOC                                                         | SO <sub>x</sub> | NOx     | CO      | PM 10   | PM 2.5  | Pb | NH <sub>3</sub> | CO <sub>2</sub> e |  |  |  |
| LDGV | 000.282                                                     | 000.002         | 000.207 | 003.392 | 000.006 | 000.005 |    | 000.023         | 00341.791         |  |  |  |
| LDGT | 000.376                                                     | 000.003         | 000.373 | 004.889 | 000.007 | 000.006 |    | 000.024         | 00439.705         |  |  |  |
| HDGV | 000.832                                                     | 000.005         | 000.964 | 016.217 | 000.016 | 000.014 |    | 000.046         | 00814.851         |  |  |  |
| LDDV | 000.084                                                     | 000.003         | 000.127 | 002.822 | 000.004 | 000.004 |    | 800.000         | 00334.379         |  |  |  |
| LDDT | 000.227                                                     | 000.004         | 000.365 | 004.850 | 000.007 | 000.006 |    | 800.000         | 00473.628         |  |  |  |
| HDDV | 000.423                                                     | 000.014         | 004.175 | 001.653 | 000.176 | 000.162 |    | 000.028         | 01559.331         |  |  |  |
| MC   | 003.040                                                     | 000.003         | 000.626 | 013.017 | 000.026 | 000.023 |    | 000.052         | 00392.775         |  |  |  |

#### B.2.2.4.4 Building Construction Phase Formula(s)

#### - Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$ 

CEE<sub>POL</sub>: Construction Exhaust Emissions (TONs)

NE: Number of Equipment

WD: Number of Total Work Days (days) H: Hours Worked per Day (hours)

EF<sub>POL</sub>: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

#### - Vehicle Exhaust Emissions per Phase





 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$ 

VMT<sub>VE</sub>: Vehicle Exhaust Vehicle Miles Travel (miles)

BA: Area of Building (ft²) BH: Height of Building (ft)

(0.42 / 1000): Conversion Factor ft<sup>3</sup> to trips (0.42 trip / 1000 ft<sup>3</sup>) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POL</sub>: Vehicle Emissions (TONs)

VMT<sub>VE</sub>: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF<sub>POL</sub>: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons

#### - Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$ 

VMT<sub>WT</sub>: Worker Trips Vehicle Miles Travel (miles)

WD: Number of Total Work Days (days)

WT: Average Worker Round Trip Commute (mile)

1.25: Conversion Factor Number of Construction Equipment to Number of Works

NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POL</sub>: Vehicle Emissions (TONs)

 $VMT_{WT}$ : Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds  $EF_{POL}$ : Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons

#### - Vender Trips Emissions per Phase

 $VMT_{VT} = BA * BH * (0.38 / 1000) * HT$ 

VMT<sub>VT</sub>: Vender Trips Vehicle Miles Travel (miles)

BA: Area of Building (ft²) BH: Height of Building (ft)

(0.38 / 1000): Conversion Factor ft<sup>3</sup> to trips (0.38 trip / 1000 ft<sup>3</sup>) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POL</sub>: Vehicle Emissions (TONs)

 $VMT_{VT}$ : Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds  $EF_{POL}$ : Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons





B.2.2.5 Architectural Coatings Phase

B.2.2.5.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date

Start Month: 9 Start Quarter: 1 Start Year: 2028

- Phase Duration

Number of Month: 1 Number of Days: 0

#### 2.4.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information

Building Category: Non-Residential

**Total Square Footage (ft²):** 25454 **Number of Units:** N/A

- Architectural Coatings Default Settings

**Default Settings Used:** Yes

Average Day(s) worked per week: 5 (default)

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

|      | LDGV  | LDGT  | HDGV | LDDV | LDDT | HDDV | MC |
|------|-------|-------|------|------|------|------|----|
| POVs | 50.00 | 50.00 | 0    | 0    | 0    | 0    | 0  |

#### B.2.2.5.2 Architectural Coatings Phase Emission Factor(s)

- Worker Trips Emission Factors (grams/mile)

|      | VOC     | SO <sub>x</sub> | NO <sub>x</sub> | CO      | PM 10   | PM 2.5  | Pb | NH <sub>3</sub> | CO <sub>2</sub> e |
|------|---------|-----------------|-----------------|---------|---------|---------|----|-----------------|-------------------|
| LDGV | 000.282 | 000.002         | 000.207         | 003.392 | 000.006 | 000.005 |    | 000.023         | 00341.791         |
| LDGT | 000.376 | 000.003         | 000.373         | 004.889 | 000.007 | 000.006 |    | 000.024         | 00439.705         |
| HDGV | 000.832 | 000.005         | 000.964         | 016.217 | 000.016 | 000.014 |    | 000.046         | 00814.851         |
| LDDV | 000.084 | 000.003         | 000.127         | 002.822 | 000.004 | 000.004 |    | 800.000         | 00334.379         |
| LDDT | 000.227 | 000.004         | 000.365         | 004.850 | 000.007 | 000.006 |    | 800.000         | 00473.628         |
| HDDV | 000.423 | 000.014         | 004.175         | 001.653 | 000.176 | 000.162 |    | 000.028         | 01559.331         |
| MC   | 003.040 | 000.003         | 000.626         | 013.017 | 000.026 | 000.023 |    | 000.052         | 00392.775         |

#### B.2.2.5.3 Architectural Coatings Phase Formula(s)

#### - Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$ 

VMT<sub>WT</sub>: Worker Trips Vehicle Miles Travel (miles)

1: Conversion Factor man days to trips (1 trip / 1 man \* day)

WT: Average Worker Round Trip Commute (mile)

PA: Paint Area (ft<sup>2</sup>)

800: Conversion Factor square feet to man days ( 1 ft<sup>2</sup> / 1 man \* day)





 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POL</sub>: Vehicle Emissions (TONs)

VMT<sub>WT</sub>: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF<sub>POL</sub>: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons

#### - Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$ 

VOC<sub>AC</sub>: Architectural Coating VOC Emissions (TONs)

BA: Area of Building (ft<sup>2</sup>)

2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)

0.0116: Emission Factor (lb/ft<sup>2</sup>)

2000: Conversion Factor pounds to tons

#### **B.2.3** Construction/Demolition

#### B.2.3.1 General Information & Timeline Assumptions

#### - Activity Location

County: Hillsborough

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: Facility Renovations

#### - Activity Description:

Facility Renovations [Assumed 25 percent of total square footage (229,376 square feet) is construction to equate the renovations]:

ATGL Storage: Building 1042 (6,417 square feet)

MPC/AFE; Building 6 (30,331 square feet)

AD ARSs x 2; Building 56 (30,037 square feet)

AFRC ARSs x 2; Building 53 (19,476 square feet)

AFRC OSS; Building 9 (8,304 square feet)

FUT; Building 1071 (27,370 square feet)

Washracks and Bird Bath Facilities 563, 580, and 1359 (107,441 square feet)

Total square footage = 229,376 square feet (25 percent of total square footage = 57,344 square feet)

Assumed 229,376 square feet would require architectural coatings.

#### - Activity Start Date

Start Month: 10 Start Month: 2025

#### - Activity End Date

Indefinite: False End Month: 9 End Month: 2028





- Activity Emissions:

| Pollutant       | Total Emissions (TONs) |
|-----------------|------------------------|
| VOC             | 3.396374               |
| SO <sub>x</sub> | 0.013641               |
| NOx             | 4.178912               |
| CO              | 6.235306               |
| PM 10           | 0.143305               |

| Pollutant         | Total Emissions (TONs) |
|-------------------|------------------------|
| PM 2.5            | 0.142637               |
| Pb                | 0.000000               |
| NH <sub>3</sub>   | 0.005041               |
| CO <sub>2</sub> e | 1317.9                 |
|                   |                        |

B.2.3.2 Building Construction Phase

B.2.3.2.1 Building Construction Phase Timeline Assumptions

- Phase Start Date

Start Month: 10 Start Quarter: 1 Start Year: 2025

- Phase Duration

Number of Month: 36 Number of Days: 0

B.2.3.2.2 Building Construction Phase Assumptions

- General Building Construction Information

**Building Category:** Office or Industrial

Area of Building (ft²): 57344 Height of Building (ft): 35 Number of Units: N/A

- Building Construction Default Settings

**Default Settings Used:** Yes

Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

| Equipment Name                      | Number Of<br>Equipment | Hours Per Day |  |  |  |  |  |  |
|-------------------------------------|------------------------|---------------|--|--|--|--|--|--|
| Cranes Composite                    | 1                      | 6             |  |  |  |  |  |  |
| Forklifts Composite                 | 2                      | 6             |  |  |  |  |  |  |
| Generator Sets Composite            | 1                      | 8             |  |  |  |  |  |  |
| Tractors/Loaders/Backhoes Composite | 1                      | 8             |  |  |  |  |  |  |
| Welders Composite                   | 3                      | 8             |  |  |  |  |  |  |

#### - Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

|      | LDGV | LDGT | HDGV | LDDV | LDDT | HDDV   | MC |
|------|------|------|------|------|------|--------|----|
| POVs | 0    | 0    | 0    | 0    | 0    | 100.00 | 0  |

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)





|      | LDGV  | LDGT  | HDGV | LDDV | LDDT | HDDV | MC |
|------|-------|-------|------|------|------|------|----|
| POVs | 50.00 | 50.00 | 0    | 0    | 0    | 0    | 0  |

#### - Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

|      | LDGV | LDGT | HDGV | LDDV | LDDT | HDDV   | MC |
|------|------|------|------|------|------|--------|----|
| POVs | 0    | 0    | 0    | 0    | 0    | 100.00 | 0  |

#### B.2.3.2.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

|                          | Construction Extradst Emission ractors (ib/notif) (default) |                 |        |        |        |        |                 |                   |  |  |
|--------------------------|-------------------------------------------------------------|-----------------|--------|--------|--------|--------|-----------------|-------------------|--|--|
| Cranes Composite         | 9                                                           |                 |        |        |        |        |                 |                   |  |  |
|                          | VOC                                                         | SOx             | NOx    | CO     | PM 10  | PM 2.5 | CH₄             | CO <sub>2</sub> e |  |  |
| Emission Factors         | 0.0680                                                      | 0.0013          | 0.4222 | 0.3737 | 0.0143 | 0.0143 | 0.0061          | 128.77            |  |  |
| <b>Forklifts Composi</b> | te                                                          |                 |        |        |        |        |                 |                   |  |  |
|                          | VOC                                                         | SOx             | NOx    | CO     | PM 10  | PM 2.5 | CH₄             | CO <sub>2</sub> e |  |  |
| Emission Factors         | 0.0236                                                      | 0.0006          | 0.0859 | 0.2147 | 0.0025 | 0.0025 | 0.0021          | 54.449            |  |  |
| <b>Generator Sets Co</b> | omposite                                                    |                 |        |        |        |        |                 |                   |  |  |
|                          | VOC                                                         | SOx             | NOx    | CO     | PM 10  | PM 2.5 | CH₄             | CO <sub>2</sub> e |  |  |
| Emission Factors         | 0.0287                                                      | 0.0006          | 0.2329 | 0.2666 | 0.0080 | 0.0080 | 0.0025          | 61.057            |  |  |
| Tractors/Loaders/        | <b>Backhoes</b>                                             | Composit        | te     |        |        |        |                 |                   |  |  |
|                          | VOC                                                         | SO <sub>x</sub> | NOx    | СО     | PM 10  | PM 2.5 | CH <sub>4</sub> | CO₂e              |  |  |
| Emission Factors         | 0.0335                                                      | 0.0007          | 0.1857 | 0.3586 | 0.0058 | 0.0058 | 0.0030          | 66.872            |  |  |
| <b>Welders Composi</b>   | te                                                          |                 |        |        |        |        |                 |                   |  |  |
|                          | VOC                                                         | SOx             | NOx    | CO     | PM 10  | PM 2.5 | CH₄             | CO <sub>2</sub> e |  |  |
| Emission Factors         | 0.0214                                                      | 0.0003          | 0.1373 | 0.1745 | 0.0051 | 0.0051 | 0.0019          | 25.650            |  |  |

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

|      | VOC     | SO <sub>x</sub> | NO <sub>x</sub> | CO      | PM 10   | PM 2.5  | Pb | NH <sub>3</sub> | CO <sub>2</sub> e |
|------|---------|-----------------|-----------------|---------|---------|---------|----|-----------------|-------------------|
| LDGV | 000.282 | 000.002         | 000.207         | 003.392 | 000.006 | 000.005 |    | 000.023         | 00341.791         |
| LDGT | 000.376 | 000.003         | 000.373         | 004.889 | 000.007 | 000.006 |    | 000.024         | 00439.705         |
| HDGV | 000.832 | 000.005         | 000.964         | 016.217 | 000.016 | 000.014 |    | 000.046         | 00814.851         |
| LDDV | 000.084 | 000.003         | 000.127         | 002.822 | 000.004 | 000.004 |    | 800.000         | 00334.379         |
| LDDT | 000.227 | 000.004         | 000.365         | 004.850 | 000.007 | 000.006 |    | 800.000         | 00473.628         |
| HDDV | 000.423 | 000.014         | 004.175         | 001.653 | 000.176 | 000.162 |    | 000.028         | 01559.331         |
| MC   | 003.040 | 000.003         | 000.626         | 013.017 | 000.026 | 000.023 |    | 000.052         | 00392.775         |

#### B.2.3.2.4 Building Construction Phase Formula(s)

#### - Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$ 

CEE<sub>POL</sub>: Construction Exhaust Emissions (TONs)

NE: Number of Equipment

WD: Number of Total Work Days (days)

H: Hours Worked per Day (hours)

EF<sub>POL</sub>: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

#### - Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$ 





VMT<sub>VE</sub>: Vehicle Exhaust Vehicle Miles Travel (miles)

BA: Area of Building (ft²) BH: Height of Building (ft)

(0.42 / 1000): Conversion Factor ft<sup>3</sup> to trips (0.42 trip / 1000 ft<sup>3</sup>) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POL</sub>: Vehicle Emissions (TONs)

VMT<sub>VE</sub>: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF<sub>POL</sub>: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons

#### - Worker Trips Emissions per Phase

VMT<sub>WT</sub> = WD \* WT \* 1.25 \* NE

VMT<sub>WT</sub>: Worker Trips Vehicle Miles Travel (miles)

WD: Number of Total Work Days (days)

WT: Average Worker Round Trip Commute (mile)

1.25: Conversion Factor Number of Construction Equipment to Number of Works

NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POL</sub>: Vehicle Emissions (TONs)

VMT<sub>WT</sub>: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF<sub>POL</sub>: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons

#### - Vender Trips Emissions per Phase

 $VMT_{VT} = BA * BH * (0.38 / 1000) * HT$ 

VMT<sub>VT</sub>: Vender Trips Vehicle Miles Travel (miles)

BA: Area of Building (ft²) BH: Height of Building (ft)

(0.38 / 1000): Conversion Factor ft<sup>3</sup> to trips (0.38 trip / 1000 ft<sup>3</sup>) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POL</sub>: Vehicle Emissions (TONs)

VMT<sub>VT</sub>: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF<sub>POL</sub>: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons





B.2.3.3 Architectural Coatings Phase

B.2.3.3.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date

Start Month: 4 Start Quarter: 1 Start Year: 2028

- Phase Duration

Number of Month: 6 Number of Days: 0

#### B.2.3.3.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information

Building Category: Non-Residential

**Total Square Footage (ft²):** 229376 **Number of Units:** N/A

- Architectural Coatings Default Settings

**Default Settings Used:** Yes

Average Day(s) worked per week: 5 (default)

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

|      | LDGV  | LDGT  | HDGV | LDDV | LDDT | HDDV | MC |
|------|-------|-------|------|------|------|------|----|
| POVs | 50.00 | 50.00 | 0    | 0    | 0    | 0    | 0  |

#### B.2.3.3.3 Architectural Coatings Phase Emission Factor(s)

- Worker Trips Emission Factors (grams/mile)

|      | voc     | SO <sub>x</sub> | NO <sub>x</sub> | СО      | PM 10   | PM 2.5  | Pb | NH <sub>3</sub> | CO <sub>2</sub> e |
|------|---------|-----------------|-----------------|---------|---------|---------|----|-----------------|-------------------|
| LDGV | 000.282 | 000.002         | 000.207         | 003.392 | 000.006 | 000.005 |    | 000.023         | 00341.791         |
| LDGT | 000.376 | 000.003         | 000.373         | 004.889 | 000.007 | 000.006 |    | 000.024         | 00439.705         |
| HDGV | 000.832 | 000.005         | 000.964         | 016.217 | 000.016 | 000.014 |    | 000.046         | 00814.851         |
| LDDV | 000.084 | 000.003         | 000.127         | 002.822 | 000.004 | 000.004 |    | 800.000         | 00334.379         |
| LDDT | 000.227 | 000.004         | 000.365         | 004.850 | 000.007 | 000.006 |    | 800.000         | 00473.628         |
| HDDV | 000.423 | 000.014         | 004.175         | 001.653 | 000.176 | 000.162 |    | 000.028         | 01559.331         |
| MC   | 003.040 | 000.003         | 000.626         | 013.017 | 000.026 | 000.023 |    | 000.052         | 00392.775         |

#### B.2.3.3.4 Architectural Coatings Phase Formula(s)

#### - Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$ 

VMT<sub>WT</sub>: Worker Trips Vehicle Miles Travel (miles)

1: Conversion Factor man days to trips (1 trip / 1 man \* day)

WT: Average Worker Round Trip Commute (mile)

PA: Paint Area (ft²)

800: Conversion Factor square feet to man days ( 1 ft<sup>2</sup> / 1 man \* day)





 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POL</sub>: Vehicle Emissions (TONs)

VMT<sub>WT</sub>: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF<sub>POL</sub>: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons

#### - Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$ 

VOC<sub>AC</sub>: Architectural Coating VOC Emissions (TONs)

BA: Area of Building (ft<sup>2</sup>)

2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)

0.0116: Emission Factor (lb/ft²)

2000: Conversion Factor pounds to tons

#### **B.2.4** Construction/Demolition

#### B.2.4.1 General Information & Timeline Assumptions

#### - Activity Location

County: Hillsborough

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: Facility and Airfield Improvements

#### - Activity Description:

Facility and Airfield Improvements:

Add/Alter AGE; Construct Jack Testing Pad in Maintenance Building; Building 552 (18,614 square feet)

Add/Alter Ed Ctr/ALS; Building 252 (37,685 square feet renovation area; 2,850 square feet addition)

Add/Alter Corrosion Control Hangar 1 (75,350 square foot renovation area; 11,302 square foot addition)

Add/Alter General Purpose MX Hangar 2 (69,707 square foot renovation area; 11,302 square foot addition)

Add/Alter General Purpose MX Hangar 3 (11,302 square foot addition)

Add/Alter General Purpose MX Hangar 4 (69,707 square foot renovation area; 11,302 square foot addition)

Add/Alter Fuel Cell Hangar 5 (47,716 square foot renovation area; 11,302 square foot addition)

Add/Alter Wheel and Tire Shop; Building 44 (4,000 square feet)

Add/Alter BOT; Building 295 (5,005 square foot renovation; 1,604 square footage addition)

Add/Alter AMU; Building 55 (22,199 square feet)

Add/Alter Apron & Hydrant Fueling Pits (679,666 square foot renovation; 371,667 square foot addition)

For buildings where renovations are to be determined or where both renovations and additions are to be determined, assumed total square footage would undergo renovations.





Assumed 25 percent of total building renovation area is construction to equate the renovations. Assumed 100 percent of additional square footage is construction to equate the additions. Assumed 100 percent of building renovations and additions would require architectural coatings.

Total building renovation square footage = 465,206 square feet 25 percent of total building renovation square footage = 116,301.5 square feet Total building addition square footage = 49,662 square feet

Total assumed construction area: 165,963.5 square feet

Assumed 500 square feet needed for trenching plus total facility and airfield renovation/addition square footage for excavation.

- Activity Start Date Start Month: 10

Start Month: 2025

- Activity End Date

Indefinite: False End Month: 9 End Month: 2028

- Activity Emissions:

| Pollutant       | Total Emissions (TONs) |
|-----------------|------------------------|
| VOC             | 7.643912               |
| SO <sub>x</sub> | 0.026862               |
| NO <sub>x</sub> | 9.316662               |
| CO              | 13.212183              |
| PM 10           | 53.389972              |

| Pollutant         | Total Emissions (TONs) |
|-------------------|------------------------|
| PM 2.5            | 0.411725               |
| Pb                | 0.000000               |
| NH <sub>3</sub>   | 0.009976               |
| CO <sub>2</sub> e | 2632.8                 |
|                   |                        |

#### B.2.4.2 Trenching/Excavating Phase

#### B.2.4.2.1 Trenching / Excavating Phase Timeline Assumptions

- Phase Start Date

Start Month: 10 Start Quarter: 1 Start Year: 2025

- Phase Duration

Number of Month: 4 Number of Days: 0

#### B.2.4.2.2 Trenching / Excavating Phase Assumptions

- General Trenching/Excavating Information

Area of Site to be Trenched/Excavated (ft<sup>2</sup>): 1331337

Amount of Material to be Hauled On-Site (yd³): 0
Amount of Material to be Hauled Off-Site (yd³): 0

- Trenching Default Settings

**Default Settings Used:** Yes

Average Day(s) worked per week: 5 (default)





- Construction Exhaust (default)

| Equipment Name                               | Number Of<br>Equipment | Hours Per Day |
|----------------------------------------------|------------------------|---------------|
| Excavators Composite                         | 2                      | 8             |
| Other General Industrial Equipment Composite | 1                      | 8             |
| Tractors/Loaders/Backhoes Composite          | 1                      | 8             |

#### - Vehicle Exhaust

Average Hauling Truck Capacity (yd³): 20 (default)
Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

|      | LDGV | LDGT | HDGV | LDDV | LDDT | HDDV   | MC |
|------|------|------|------|------|------|--------|----|
| POVs | 0    | 0    | 0    | 0    | 0    | 100.00 | 0  |

#### - Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

|      | LDGV  | LDGT  | HDGV | LDDV | LDDT | HDDV | MC |
|------|-------|-------|------|------|------|------|----|
| POVs | 50.00 | 50.00 | 0    | 0    | 0    | 0    | 0  |

#### B.2.4.2.3 Trenching / Excavating Phase Emission Factor(s)

#### - Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

|      | voc     | SO <sub>x</sub> | NOx     | СО      | PM 10   | PM 2.5  | Pb | <b>NH</b> 3 | CO <sub>2</sub> e |
|------|---------|-----------------|---------|---------|---------|---------|----|-------------|-------------------|
| LDGV | 000.578 | 800.000         | 000.613 | 005.086 | 000.009 | 800.000 |    | 000.034     | 00391.932         |
| LDGT | 000.823 | 000.010         | 001.060 | 008.566 | 000.010 | 000.009 |    | 000.034     | 00522.586         |
| HDGV | 001.597 | 000.016         | 002.785 | 026.982 | 000.023 | 000.020 |    | 000.046     | 00814.010         |
| LDDV | 000.216 | 000.004         | 000.307 | 004.001 | 000.006 | 000.006 |    | 800.000     | 00402.372         |
| LDDT | 000.537 | 000.006         | 000.822 | 008.176 | 800.000 | 800.000 |    | 800.000     | 00626.077         |
| HDDV | 000.762 | 000.015         | 007.639 | 002.810 | 000.395 | 000.363 |    | 000.028     | 01633.017         |
| MC   | 003.190 | 800.000         | 000.648 | 014.785 | 000.027 | 000.024 |    | 000.048     | 00392.026         |

#### B.2.4.2.4 Trenching / Excavating Phase Formula(s)

#### - Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$ 

PM10<sub>FD</sub>: Fugitive Dust PM 10 Emissions (TONs)

20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)

ACRE: Total acres (acres)

WD: Number of Total Work Days (days) 2000: Conversion Factor pounds to tons

#### - Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$ 

CEE<sub>POL</sub>: Construction Exhaust Emissions (TONs)

NE: Number of Equipment





WD: Number of Total Work Days (days)

H: Hours Worked per Day (hours)

EF<sub>POL</sub>: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

#### - Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$ 

VMT<sub>VE</sub>: Vehicle Exhaust Vehicle Miles Travel (miles) HA<sub>OnSite</sub>: Amount of Material to be Hauled On-Site (yd³) HA<sub>OffSite</sub>: Amount of Material to be Hauled Off-Site (yd³)

HC: Average Hauling Truck Capacity (yd³)

(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POL</sub>: Vehicle Emissions (TONs)

VMT<sub>VE</sub>: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF<sub>POL</sub>: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons

#### - Worker Trips Emissions per Phase

VMTwT = WD \* WT \* 1.25 \* NE

VMT<sub>WT</sub>: Worker Trips Vehicle Miles Travel (miles)

WD: Number of Total Work Days (days)

WT: Average Worker Round Trip Commute (mile)

1.25: Conversion Factor Number of Construction Equipment to Number of Works

**NE:** Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POI</sub>: Vehicle Emissions (TONs)

VMT<sub>VE</sub>: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF<sub>POL</sub>: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons

B.2.4.3 Building Construction Phase

B.2.4.3.1 Building Construction Phase Timeline Assumptions

- Phase Start Date

Start Month: 10 Start Quarter: 1 Start Year: 2025

- Phase Duration

Number of Month: 36





Number of Days: 0

#### B.2.4.3.2 Building Construction Phase Assumptions

#### - General Building Construction Information

Building Category: Office or Industrial

Area of Building (ft²): 165963.5 Height of Building (ft): 35 Number of Units: N/A

#### - Building Construction Default Settings

**Default Settings Used:** Yes

Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

| Equipment Name                      | Number Of<br>Equipment | Hours Per Day |
|-------------------------------------|------------------------|---------------|
| Cranes Composite                    | 1                      | 6             |
| Forklifts Composite                 | 2                      | 6             |
| Generator Sets Composite            | 1                      | 8             |
| Tractors/Loaders/Backhoes Composite | 1                      | 8             |
| Welders Composite                   | 3                      | 8             |

#### - Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

|      | LDGV | LDGT | HDGV | LDDV | LDDT | HDDV   | MC |
|------|------|------|------|------|------|--------|----|
| POVs | 0    | 0    | 0    | 0    | 0    | 100.00 | 0  |

#### - Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

|      | LDGV  | LDGT ` | HDGV | LDDV | LDDT | HDDV | MC |
|------|-------|--------|------|------|------|------|----|
| POVs | 50.00 | 50.00  | 0    | 0    | 0    | 0    | 0  |

#### - Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

|      | LDGV | LDGT | HDGV | LDDV | LDDT | HDDV   | MC |
|------|------|------|------|------|------|--------|----|
| POVs | 0    | 0    | 0    | 0    | 0    | 100.00 | 0  |

#### B.2.4.3.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

|                          |          |        |        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,      |        |                 |                   |  |  |  |
|--------------------------|----------|--------|--------|----------------------------------------|--------|--------|-----------------|-------------------|--|--|--|
| Cranes Composite         |          |        |        |                                        |        |        |                 |                   |  |  |  |
| _                        | VOC      | SOx    | NOx    | CO                                     | PM 10  | PM 2.5 | CH <sub>4</sub> | CO <sub>2</sub> e |  |  |  |
| <b>Emission Factors</b>  | 0.0680   | 0.0013 | 0.4222 | 0.3737                                 | 0.0143 | 0.0143 | 0.0061          | 128.77            |  |  |  |
| <b>Forklifts Composi</b> | ite      |        |        |                                        |        |        |                 |                   |  |  |  |
|                          | VOC      | SOx    | NOx    | CO                                     | PM 10  | PM 2.5 | CH₄             | CO <sub>2</sub> e |  |  |  |
| <b>Emission Factors</b>  | 0.0236   | 0.0006 | 0.0859 | 0.2147                                 | 0.0025 | 0.0025 | 0.0021          | 54.449            |  |  |  |
| Generator Sets Co        | omposite |        |        |                                        |        |        |                 |                   |  |  |  |





|                         | VOC             | SOx             | NOx             | CO     | PM 10  | PM 2.5 | CH₄    | CO <sub>2</sub> e |
|-------------------------|-----------------|-----------------|-----------------|--------|--------|--------|--------|-------------------|
| <b>Emission Factors</b> | 0.0287          | 0.0006          | 0.2329          | 0.2666 | 0.0080 | 0.0080 | 0.0025 | 61.057            |
| Tractors/Loaders/       | <b>Backhoes</b> | Composit        | te              |        |        |        |        |                   |
|                         | VOC             | SO <sub>x</sub> | NO <sub>x</sub> | CO     | PM 10  | PM 2.5 | CH₄    | CO <sub>2</sub> e |
| Emission Factors        | 0.0335          | 0.0007          | 0.1857          | 0.3586 | 0.0058 | 0.0058 | 0.0030 | 66.872            |
| <b>Welders Composi</b>  | te              |                 |                 |        |        |        |        |                   |
|                         | VOC             | SOx             | NOx             | CO     | PM 10  | PM 2.5 | CH₄    | CO <sub>2</sub> e |
| Emission Factors        | 0.0214          | 0.0003          | 0.1373          | 0.1745 | 0.0051 | 0.0051 | 0.0019 | 25.650            |

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

|      | VOC     | SO <sub>x</sub> | NO <sub>x</sub> | CO      | PM 10   | PM 2.5  | Pb | NH <sub>3</sub> | CO <sub>2</sub> e |
|------|---------|-----------------|-----------------|---------|---------|---------|----|-----------------|-------------------|
| LDGV | 000.282 | 000.002         | 000.207         | 003.392 | 000.006 | 000.005 |    | 000.023         | 00341.791         |
| LDGT | 000.376 | 000.003         | 000.373         | 004.889 | 000.007 | 000.006 |    | 000.024         | 00439.705         |
| HDGV | 000.832 | 000.005         | 000.964         | 016.217 | 000.016 | 000.014 |    | 000.046         | 00814.851         |
| LDDV | 000.084 | 000.003         | 000.127         | 002.822 | 000.004 | 000.004 |    | 800.000         | 00334.379         |
| LDDT | 000.227 | 000.004         | 000.365         | 004.850 | 000.007 | 000.006 |    | 800.000         | 00473.628         |
| HDDV | 000.423 | 000.014         | 004.175         | 001.653 | 000.176 | 000.162 |    | 000.028         | 01559.331         |
| MC   | 003.040 | 000.003         | 000.626         | 013.017 | 000.026 | 000.023 |    | 000.052         | 00392.775         |

#### B.2.4.3.4 Building Construction Phase Formula(s)

#### - Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$ 

CEE<sub>POL</sub>: Construction Exhaust Emissions (TONs)

NE: Number of Equipment

WD: Number of Total Work Days (days)

H: Hours Worked per Day (hours)

EF<sub>POL</sub>: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

#### - Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$ 

VMT<sub>VE</sub>: Vehicle Exhaust Vehicle Miles Travel (miles)

BA: Area of Building (ft²) BH: Height of Building (ft)

(0.42 / 1000): Conversion Factor ft<sup>3</sup> to trips (0.42 trip / 1000 ft<sup>3</sup>) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POL</sub>: Vehicle Emissions (TONs)

VMT<sub>VE</sub>: Vehicle Exhaust Vehicle Miles Travel (miles)

0.002205: Conversion Factor grams to pounds EF<sub>POL</sub>: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons

#### - Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$ 

VMT<sub>WT</sub>: Worker Trips Vehicle Miles Travel (miles)





WD: Number of Total Work Days (days)

WT: Average Worker Round Trip Commute (mile)

1.25: Conversion Factor Number of Construction Equipment to Number of Works

NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POL</sub>: Vehicle Emissions (TONs)

VMT<sub>WT</sub>: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF<sub>POL</sub>: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons

#### - Vender Trips Emissions per Phase

 $VMT_{VT} = BA * BH * (0.38 / 1000) * HT$ 

VMT<sub>VT</sub>: Vender Trips Vehicle Miles Travel (miles)

BA: Area of Building (ft²) BH: Height of Building (ft)

(0.38 / 1000): Conversion Factor ft<sup>3</sup> to trips (0.38 trip / 1000 ft<sup>3</sup>) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POL</sub>: Vehicle Emissions (TONs)

VMT<sub>VT</sub>: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF<sub>POL</sub>: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons

B.2.4.4 Architectural Coatings Phase

B.2.4.4.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date

Start Month: 8 Start Quarter: 1 Start Year: 2028

- Phase Duration

Number of Month: 1 Number of Days: 0

#### B.2.4.4.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information

Building Category: Non-Residential

**Total Square Footage (ft²):** 514868 **Number of Units:** N/A

#### - Architectural Coatings Default Settings





**Default Settings Used:** Yes

Average Day(s) worked per week: 5 (default)

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

|      | LDGV  | LDGT  | HDGV | LDDV | LDDT | HDDV | MC |
|------|-------|-------|------|------|------|------|----|
| POVs | 50.00 | 50.00 | 0    | 0    | 0    | 0    | 0  |

#### B.2.4.4.3 Architectural Coatings Phase Emission Factor(s)

- Worker Trips Emission Factors (grams/mile)

|      |         |                 | 10              | •       |         |         |    |                 |                   |
|------|---------|-----------------|-----------------|---------|---------|---------|----|-----------------|-------------------|
|      | VOC     | SO <sub>x</sub> | NO <sub>x</sub> | CO      | PM 10   | PM 2.5  | Pb | NH <sub>3</sub> | CO <sub>2</sub> e |
| LDGV | 000.282 | 000.002         | 000.207         | 003.392 | 000.006 | 000.005 |    | 000.023         | 00341.791         |
| LDGT | 000.376 | 000.003         | 000.373         | 004.889 | 000.007 | 000.006 |    | 000.024         | 00439.705         |
| HDGV | 000.832 | 000.005         | 000.964         | 016.217 | 000.016 | 000.014 |    | 000.046         | 00814.851         |
| LDDV | 000.084 | 000.003         | 000.127         | 002.822 | 000.004 | 000.004 |    | 800.000         | 00334.379         |
| LDDT | 000.227 | 000.004         | 000.365         | 004.850 | 000.007 | 000.006 |    | 800.000         | 00473.628         |
| HDDV | 000.423 | 000.014         | 004.175         | 001.653 | 000.176 | 000.162 |    | 000.028         | 01559.331         |
| MC   | 003.040 | 000.003         | 000.626         | 013.017 | 000.026 | 000.023 |    | 000.052         | 00392.775         |

#### B.2.4.4.4 Architectural Coatings Phase Formula(s)

#### - Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$ 

VMT<sub>WT</sub>: Worker Trips Vehicle Miles Travel (miles)

1: Conversion Factor man days to trips (1 trip / 1 man \* day)

WT: Average Worker Round Trip Commute (mile)

PA: Paint Area (ft²)

800: Conversion Factor square feet to man days ( 1 ft2 / 1 man \* day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POL</sub>: Vehicle Emissions (TONs)

VMT<sub>WT</sub>: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF<sub>POL</sub>: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons

#### - Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$ 

VOC<sub>AC</sub>: Architectural Coating VOC Emissions (TONs)

BA: Area of Building (ft<sup>2</sup>)

2.0: Conversion Factor total area to coated area (2.0 ft<sup>2</sup> coated area / total area)

0.0116: Emission Factor (lb/ft²)

2000: Conversion Factor pounds to tons





B.2.4.5 Paving Phase

B.2.4.5.1 Paving Phase Timeline Assumptions

- Phase Start Date

Start Month: 10 Start Quarter: 1 Start Year: 2025

- Phase Duration

Number of Month: 36 Number of Days: 0

B.2.4.5.2 Paving Phase Assumptions

- General Paving Information

**Paving Area (ft²):** 1051333

- Paving Default Settings

**Default Settings Used:** Yes

Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

| Equipment Name             | Number Of<br>Equipment | Hours Per Day |
|----------------------------|------------------------|---------------|
| Pavers Composite           | 1                      | 8             |
| Paving Equipment Composite | 2                      | 8             |
| Rollers Composite          | 2                      | 6             |

#### - Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

|      |      |      | ( ' - ' |      |      |        |    |  |  |  |
|------|------|------|---------|------|------|--------|----|--|--|--|
|      | LDGV | LDGT | HDGV    | LDDV | LDDT | HDDV   | MC |  |  |  |
| POVs | 0    | 0    | 0       | 0    | 0    | 100.00 | 0  |  |  |  |

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

|      | LDGV  | LDGT  | HDGV | LDDV | LDDT | HDDV | MC |
|------|-------|-------|------|------|------|------|----|
| POVs | 50.00 | 50.00 | 0    | 0    | 0    | 0    | 0  |

#### B.2.4.5.3 Paving Phase Emission Factor(s)

#### - Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

|      | VOC     | SO <sub>x</sub> | NOx     | CO      | PM 10   | PM 2.5  | Pb | NH <sub>3</sub> | CO <sub>2</sub> e |
|------|---------|-----------------|---------|---------|---------|---------|----|-----------------|-------------------|
| LDGV | 000.578 | 800.000         | 000.613 | 005.086 | 000.009 | 800.000 |    | 000.034         | 00391.932         |
| LDGT | 000.823 | 000.010         | 001.060 | 008.566 | 000.010 | 000.009 |    | 000.034         | 00522.586         |
| HDGV | 001.597 | 000.016         | 002.785 | 026.982 | 000.023 | 000.020 |    | 000.046         | 00814.010         |
| LDDV | 000.216 | 000.004         | 000.307 | 004.001 | 000.006 | 000.006 |    | 800.000         | 00402.372         |
| LDDT | 000.537 | 000.006         | 000.822 | 008.176 | 800.000 | 800.000 |    | 800.000         | 00626.077         |





| HDDV | 000.762 | 000.015 | 007.639 | 002.810 | 000.395 | 000.363 | 000.028 | 01633.017 |
|------|---------|---------|---------|---------|---------|---------|---------|-----------|
| MC   | 003.190 | 800.000 | 000.648 | 014.785 | 000.027 | 000.024 | 000.048 | 00392.026 |

#### B.2.4.5.4 Paving Phase Formula(s)

#### - Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$ 

CEE<sub>POL</sub>: Construction Exhaust Emissions (TONs)

NE: Number of Equipment

WD: Number of Total Work Days (days)

H: Hours Worked per Day (hours)

EF<sub>POL</sub>: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

#### - Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = PA * 0.25 * (1 / 27) * (1 / HC) * HT$ 

VMT<sub>VE</sub>: Vehicle Exhaust Vehicle Miles Travel (miles)

PA: Paving Area (ft²)

0.25: Thickness of Paving Area (ft)

(1 / 27): Conversion Factor cubic feet to cubic yards (1 yd³ / 27 ft³)

HC: Average Hauling Truck Capacity (yd³)

(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POL</sub>: Vehicle Emissions (TONs)

VMT<sub>VE</sub>: Vehicle Exhaust Vehicle Miles Travel (miles)

0.002205: Conversion Factor grams to pounds EF<sub>POL</sub>: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons

#### - Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$ 

VMT<sub>WT</sub>: Worker Trips Vehicle Miles Travel (miles)

WD: Number of Total Work Days (days)

WT: Average Worker Round Trip Commute (mile)

1.25: Conversion Factor Number of Construction Equipment to Number of Works

NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POL</sub>: Vehicle Emissions (TONs)

 $VMT_{VE}$ : Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds  $EF_{POL}$ : Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons





## - Off-Gassing Emissions per Phase

 $VOC_P = (2.62 * PA) / 43560$ 

VOC<sub>P</sub>: Paving VOC Emissions (TONs)

2.62: Emission Factor (lb/acre)

PA: Paving Area (ft<sup>2</sup>)

43560: Conversion Factor square feet to acre (43560 ft2 / acre)<sup>2</sup> / acre)

#### **B.2.5** Personnel

## B.2.5.1 General Information & Timeline Assumptions

## - Add or Remove Activity from Baseline? Add

- Activity Location

County: Hillsborough

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: Addition of Personnel

#### - Activity Description:

Net change of additional 221 military personnel, additional 13 government civilian and contractor personnel, and additional 49 military dependents and family members. Conservatively assumed all military dependents and family members commute.

## - Activity Start Date

Start Month: 10 Start Year: 2028

## - Activity End Date

Indefinite: Yes End Month: N/A End Year: N/A

## - Activity Emissions:

| Pollutant       | Emissions Per Year<br>(TONs) |
|-----------------|------------------------------|
| VOC             | 0.524446                     |
| SO <sub>x</sub> | 0.003524                     |
| NOx             | 0.423095                     |
| CO              | 6.010837                     |
| PM 10           | 0.009370                     |

| Pollutant         | Emissions Per Year |
|-------------------|--------------------|
|                   | (TONs)             |
| PM 2.5            | 0.007978           |
| Pb                | 0.000000           |
| NH <sub>3</sub>   | 0.032357           |
| CO <sub>2</sub> e | 539.4              |
|                   |                    |

## B.2.5.2 Personnel Assumptions

#### - Number of Personnel

Active Duty Personnel: 221
Civilian Personnel: 13
Support Contractor Personnel: 0
Air National Guard (ANG) Personnel: 0
Reserve Personnel: 0





- Default Settings Used: Yes

- Average Personnel Round Trip Commute (mile): 20 (default)

- Personnel Work Schedule

Active Duty Personnel: 5 Days Per Week (default)
Civilian Personnel: 5 Days Per Week (default)
Support Contractor Personnel: 5 Days Per Week (default)
Air National Guard (ANG) Personnel: 4 Days Per Week (default)
Reserve Personnel: 4 Days Per Month (default)

#### B.2.5.3 Personnel On Road Vehicle Mixture

#### - On Road Vehicle Mixture (%)

|      | LDGV  | LDGT  | HDGV | LDDV | LDDT | HDDV | MC  |
|------|-------|-------|------|------|------|------|-----|
| POVs | 37.55 | 60.32 | 0    | 0.03 | 0.2  | 0    | 1.9 |
| GOVs | 54.49 | 37.73 | 4.67 | 0    | 0    | 3.11 | 0   |

## B.2.5.4 Personnel Emission Factor(s)

- On Road Vehicle Emission Factors (grams/mile)

|      | VOC     | SO <sub>x</sub> | NOx     | , co    | PM 10   | PM 2.5  | Pb | NH <sub>3</sub> | CO <sub>2</sub> e |
|------|---------|-----------------|---------|---------|---------|---------|----|-----------------|-------------------|
| LDGV | 000.282 | 000.002         | 000.207 | 003.392 | 000.006 | 000.005 |    | 000.023         | 00341.791         |
| LDGT | 000.376 | 000.003         | 000.373 | 004.889 | 000.007 | 000.006 |    | 000.024         | 00439.705         |
| HDGV | 000.832 | 000.005         | 000.964 | 016.217 | 000.016 | 000.014 |    | 000.046         | 00814.851         |
| LDDV | 000.084 | 000.003         | 000.127 | 002.822 | 000.004 | 000.004 |    | 800.000         | 00334.379         |
| LDDT | 000.227 | 000.004         | 000.365 | 004.850 | 000.007 | 000.006 |    | 800.000         | 00473.628         |
| HDDV | 000.423 | 000.014         | 004.175 | 001.653 | 000.176 | 000.162 |    | 000.028         | 01559.331         |
| MC   | 003.040 | 000.003         | 000.626 | 013.017 | 000.026 | 000.023 |    | 000.052         | 00392.775         |

## B.2.5.5 Personnel Formula(s)

## - Personnel Vehicle Miles Travel for Work Days per Year

 $VMT_P = NP * WD * AC$ 

VMT<sub>P</sub>: Personnel Vehicle Miles Travel (miles/year)

NP: Number of Personnel WD: Work Days per Year AC: Average Commute (miles)

## - Total Vehicle Miles Travel per Year

 $VMT_{Total} = VMT_{AD} + VMT_{C} + VMT_{SC} + VMT_{ANG} + VMT_{AFRC}$ 

VMT<sub>Total</sub>: Total Vehicle Miles Travel (miles)

VMT<sub>AD</sub>: Active Duty Personnel Vehicle Miles Travel (miles) VMT<sub>C</sub>: Civilian Personnel Vehicle Miles Travel (miles)

VMT<sub>SC</sub>: Support Contractor Personnel Vehicle Miles Travel (miles) VMT<sub>ANG</sub>: Air National Guard Personnel Vehicle Miles Travel (miles)

VMT<sub>AFRC</sub>: Reserve Personnel Vehicle Miles Travel (miles)

## - Vehicle Emissions per Year

 $V_{POL} = (VMT_{Total} * 0.002205 * EF_{POL} * VM) / 2000$ 





V<sub>POL</sub>: Vehicle Emissions (TONs)

VMT<sub>Total</sub>: Total Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF<sub>POL</sub>: Emission Factor for Pollutant (grams/mile) VM: Personnel On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

## **B.2.6** Heating

B.2.6.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Hillsborough

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: Heating of New Facilities

- Activity Description:

Heating of new facilities: DASH-21 Facility (19,656 square feet); and High Bay Supply/Bulk Storage Warehouse (5,798 square feet). Heating for facility additions (49,662 total square feet).

- Activity Start Date

Start Month: 10 Start Year: 2028

- Activity End Date

Indefinite: Yes End Month: N/A End Year: N/A

- Activity Emissions:

| Pollutant       | Emissions Per Year<br>(TONs) |
|-----------------|------------------------------|
| VOC             | 0.014617                     |
| SO <sub>x</sub> | 0.001595                     |
| NO <sub>x</sub> | 0.265768                     |
| CO              | 0.223245                     |
| PM 10           | 0.020198                     |

| Pollutant         | Emissions Per Year<br>(TONs) |
|-------------------|------------------------------|
| PM 2.5            | 0.020198                     |
| Pb                | 0.000000                     |
| NH <sub>3</sub>   | 0.000000                     |
| CO <sub>2</sub> e | 320.0                        |
|                   |                              |

## B.2.6.2 Heating Assumptions

- Heating

**Heating Calculation Type:** Heat Energy Requirement Method

- Heat Energy Requirement Method

Area of floorspace to be heated (ft²): 75116

Type of fuel: Natural Gas

**Type of boiler/furnace:** Commercial/Institutional (0.3 - 9.9 MMBtu/hr)

Heat Value (MMBtu/ft³): 0.00105 Energy Intensity (MMBtu/ft²): 0.0743





- Default Settings Used: Yes

- Boiler/Furnace Usage

Operating Time Per Year (hours): 900 (default)

B.2.6.3 Heating Emission Factor(s)

- Heating Emission Factors (lb/1000000 scf)

| voc | SOx | NOx | СО | PM 10 | PM 2.5 | Pb | NH <sub>3</sub> | CO <sub>2</sub> e |
|-----|-----|-----|----|-------|--------|----|-----------------|-------------------|
| 5.5 | 0.6 | 100 | 84 | 7.6   | 7.6    |    |                 | 120390            |

## B.2.6.4 Heating Formula(s)

## - Heating Fuel Consumption ft<sup>3</sup> per Year

FC<sub>HER</sub>= HA \* EI / HV / 1000000

FC<sub>HER</sub>: Fuel Consumption for Heat Energy Requirement Method

HA: Area of floorspace to be heated (ft²) EI: Energy Intensity Requirement (MMBtu/ft²)

HV: Heat Value (MMBTU/ft³) 1000000: Conversion Factor

## - Heating Emissions per Year

HE<sub>POL</sub>= FC \* EF<sub>POL</sub> / 2000

HE<sub>POL</sub>: Heating Emission Emissions (TONs)

FC: Fuel Consumption

EF<sub>POL</sub>: Emission Factor for Pollutant 2000: Conversion Factor pounds to tons

#### **B.2.7** Paint Booth

#### B.2.7.1 General Information & Timeline Assumptions

## - Add or Remove Activity from Baseline? Add

- Activity Location

County: Hillsborough

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: KC-46A Maintenance Hangar Paint Booth

#### - Activity Description:

KC-46A Maintenance Hangar Paint Booth. Assumed paint booth is relatively small and its operation and emissions will be similar to the reduction in maintenance painting conducted for the KC-135 aircraft that will be removed from the installation. Therefore, it is assumed no emissions increase due to painting.

## - Activity Start Date

Start Month: 10 Start Year: 2028





- Activity End Date

Indefinite: Yes End Month: N/A End Year: N/A

- Activity Emissions:

| Activity Emileoioner |                              |  |  |  |
|----------------------|------------------------------|--|--|--|
| Pollutant            | Emissions Per Year<br>(TONs) |  |  |  |
| VOC                  | 0.00000                      |  |  |  |
| SO <sub>x</sub>      | 0.000000                     |  |  |  |
| NO <sub>x</sub>      | 0.000000                     |  |  |  |
| CO                   | 0.000000                     |  |  |  |
| PM 10                | 0.00000                      |  |  |  |

| Pollutant         | Emissions Per Year<br>(TONs) |
|-------------------|------------------------------|
| PM 2.5            | 0.00000                      |
| Pb                | 0.00000                      |
| NH <sub>3</sub>   | 0.00000                      |
| CO <sub>2</sub> e | 0.0                          |
|                   |                              |

## B.2.7.2 Paint Booth Assumptions

- Paint Booth

Coating throughput (gallons/year): 0

- Default Settings Used: Yes

- Paint Booth Consumption

Coating used: Quick Dry Enamel (default)

Specific gravity of coating: 1.19 (default)
Coating VOC content by weight (%): 32 (default)
Efficiency of control device (%): 0 (default)

B.2.7.3 Paint Booth Formula(s)

- Paint Booth Emissions per Year

PBE<sub>VOC</sub>= (VOC / 100) \* CT \* SG \* 8.35 \* (1 - (CD / 100)) / 2000

PBE<sub>VOC</sub>: Paint Booth VOC Emissions (TONs per Year)

VOC: Coating VOC content by weight (%)

(VOC / 100): Conversion Factor percent to decimal

CT: Coating throughput (gallons/year)

SG: Specific gravity of coating

8.35: Conversion Factor the density of water

CD: Efficiency of control device (%)

(1 - (CD / 100)): Conversion Factor percent to decimal (Not effected by control device)

2000: Conversion Factor pounds to tons

B.2.8 Aircraft

B.2.8.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Hillsborough

Regulatory Area(s): NOT IN A REGULATORY AREA





 Activity Title: Beddown of 24 KC-46A Aircraft at MacDill AFB, Florida - LTOs, APU, Engine Testing

## - Activity Description:

Beddown 24 KC-46A Aircraft at MacDill AFB, and associated LTOs, APU, and Engine Runup Testing operations. Assumed aerospace ground equipment (AGE) used for the KC-46A that would be added would be similar to the AGE used for the KC-135A that would be removed. Therefore, AGE-related emissions added from KC-46A beddown would be similar to the reduction in AGE-related emissions from KC-135 removal. Therefore, it is assumed no net emissions change from AGE.

- Activity Start Date

Start Month: 10 Start Year: 2028

- Activity End Date

Indefinite: Yes End Month: N/A End Year: N/A

- Activity Emissions:

| Pollutant       | Emissions Per Year |
|-----------------|--------------------|
|                 | (TONs)             |
| VOC             | 9.725478           |
| SO <sub>x</sub> | 3.869567           |
| NOx             | 68.681025          |
| CO              | 35.517619          |
| PM 10           | 0.262188           |

| Pollutant         | Emissions Per Year |  |  |
|-------------------|--------------------|--|--|
|                   | (TONs)             |  |  |
| PM 2.5            | 0.227532           |  |  |
| Pb                | 0.000000           |  |  |
| NH <sub>3</sub>   | 0.000000           |  |  |
| CO <sub>2</sub> e | 11207.7            |  |  |
|                   |                    |  |  |

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

| Trouvery Emiliaries [1 light operation |                           |  |  |
|----------------------------------------|---------------------------|--|--|
| Pollutant                              | <b>Emissions Per Year</b> |  |  |
|                                        | (TONs)                    |  |  |
| VOC                                    | 9.604696                  |  |  |
| SO <sub>x</sub>                        | 3.619114                  |  |  |
| NO <sub>x</sub>                        | 62.757517                 |  |  |
| CO                                     | 34.964277                 |  |  |
| PM 10                                  | 0.245676                  |  |  |

| Pollutant         | Emissions Per Year<br>(TONs) |
|-------------------|------------------------------|
| PM 2.5            | 0.213361                     |
| Pb                | 0.000000                     |
| NH <sub>3</sub>   | 0.000000                     |
| CO <sub>2</sub> e | 10450.7                      |
|                   |                              |

- Activity Emissions [Test Cell part]:

| rearries = meeters [reer een partj. |                           |  |  |  |
|-------------------------------------|---------------------------|--|--|--|
| Pollutant                           | <b>Emissions Per Year</b> |  |  |  |
|                                     | (TONs)                    |  |  |  |
| VOC                                 | 0.120782                  |  |  |  |
| SO <sub>x</sub>                     | 0.250453                  |  |  |  |
| NOx                                 | 5.923508                  |  |  |  |
| CO                                  | 0.553342                  |  |  |  |
| PM 10                               | 0.016512                  |  |  |  |

| Pollutant         | Emissions Per Year<br>(TONs) |
|-------------------|------------------------------|
| PM 2.5            | 0.014171                     |
| Pb                | 0.000000                     |
| NH <sub>3</sub>   | 0.000000                     |
| CO <sub>2</sub> e | 757.0                        |
|                   |                              |

B.2.8.2 Aircraft & Engines

B.2.8.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

**Aircraft Designation**: KC-46A **Engine Model**: PW4062





**Primary Function:** Transport - Bomber

Aircraft has After burn: No Number of Engines: 2

- Aircraft & Engine Surrogate

Is Aircraft & Engine a Surrogate? No

Original Aircraft Name: Original Engine Name:

#### B.2.8.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

| The state of the grant terror to the state of the state of |              |       |                 |       |       |       |        |                   |
|------------------------------------------------------------|--------------|-------|-----------------|-------|-------|-------|--------|-------------------|
|                                                            | Fuel<br>Flow | VOC   | SO <sub>x</sub> | NOx   | СО    | PM 10 | PM 2.5 | CO <sub>2</sub> e |
| Idle                                                       | 1666.68      | 12.49 | 1.07            | 3.78  | 42.61 | 0.11  | 0.10   | 3234              |
| Approach                                                   | 5698.45      | 0.10  | 1.07            | 12.17 | 1.93  | 0.05  | 0.04   | 3234              |
| Intermediate                                               | 16865.19     | 0.08  | 1.07            | 25.98 | 0.50  | 0.07  | 0.06   | 3234              |
| Military                                                   | 21627.13     | 0.09  | 1.07            | 34.36 | 0.61  | 0.08  | 0.07   | 3234              |
| After Burn                                                 | 0.00         | 0.00  | 0.00            | 0.00  | 0.00  | 0.00  | 0.00   | 3234              |

B.2.8.3 Flight Operations

## B.2.8.3.1 Flight Operations Assumptions

## - Flight Operations

Number of Aircraft: 24

Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 1306.5

Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 0

Number of Annual Trim Test(s) per Aircraft: 1

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)

Taxi/Idle Out [Idle] (mins):10.16Takeoff [Military] (mins):1.29Takeoff [After Burn] (mins):0Climb Out [Intermediate] (mins):2.29Approach [Approach] (mins):6.54Taxi/Idle In [Idle] (mins):10.16

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test

Idle (mins):12Approach (mins):27Intermediate (mins):9Military (mins):12AfterBurn (mins):0

## B.2.8.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year





AEM<sub>POL</sub> = (TIM / 60) \* (FC / 1000) \* EF \* NE \* LTO / 2000

AEM<sub>POL</sub>: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

LTO: Number of Landing and Take-off Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

## - Aircraft Emissions for LTOs per Year

AELTO = AEMIDLE\_IN + AEMIDLE\_OUT + AEMAPPROACH + AEMCLIMBOUT + AEMTAKEOFF

AE<sub>LTO</sub>: Aircraft Emissions (TONs)

AEM<sub>IDLE\_IN</sub>: Aircraft Emissions for Idle-In Mode (TONs) AEM<sub>IDLE\_OUT</sub>: Aircraft Emissions for Idle-Out Mode (TONs) AEM<sub>APPROACH</sub>: Aircraft Emissions for Approach Mode (TONs) AEM<sub>CLIMBOUT</sub>: Aircraft Emissions for Climb-Out Mode (TONs) AEM<sub>TAKEOFF</sub>: Aircraft Emissions for Take-Off Mode (TONs)

## - Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$ 

AEM<sub>POL</sub>: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

TGO: Number of Touch-and-Go Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

#### - Aircraft Emissions for TGOs per Year

AETGO = AEMAPPROACH + AEMCLIMBOUT + AEMTAKEOFF

AE<sub>TGO</sub>: Aircraft Emissions (TONs)

AEM<sub>APPROACH</sub>: Aircraft Emissions for Approach Mode (TONs) AEM<sub>CLIMBOUT</sub>: Aircraft Emissions for Climb-Out Mode (TONs) AEM<sub>TAKEOFF</sub>: Aircraft Emissions for Take-Off Mode (TONs)

## - Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$ 

AEPS<sub>POL</sub>: Aircraft Emissions per Pollutant & Power Setting (TONs)

TD: Test Duration (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)





NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test

2000: Conversion Factor pounds to TONs

## - Aircraft Emissions for Trim per Year

AETRIM = AEPSIDLE + AEPSAPPROACH + AEPSINTERMEDIATE + AEPSMILITARY + AEPSAFTERBURN

AE<sub>TRIM</sub>: Aircraft Emissions (TONs)

AEPS<sub>IDLE</sub>: Aircraft Emissions for Idle Power Setting (TONs)

AEPS<sub>APPROACH</sub>: Aircraft Emissions for Approach Power Setting (TONs) AEPS<sub>INTERMEDIATE</sub>: Aircraft Emissions for Intermediate Power Setting (TONs)

AEPS<sub>MILITARY</sub>: Aircraft Emissions for Military Power Setting (TONs)

AEPS<sub>AFTERBURN</sub>: Aircraft Emissions for After Burner Power Setting (TONs)

B.2.8.4 Auxiliary Power Unit (APU)

B.2.8.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

| Number of<br>APU per<br>Aircraft | Operation<br>Hours for Each<br>LTO | Exempt Source? | Designation    | Manufacturer   |
|----------------------------------|------------------------------------|----------------|----------------|----------------|
| 1                                | 0.87                               | No             | GTCP 331-200ER | Honeywell Inc. |

## 8.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

| Designation    | Fuel<br>Flow | voc   | SO <sub>x</sub> | NOx   | СО    | PM 10  | PM 2.5 | CO <sub>2</sub> e |
|----------------|--------------|-------|-----------------|-------|-------|--------|--------|-------------------|
| GTCP 331-200ER | 267.9        | 0.115 | 0.284           | 2.548 | 1.110 | -1.000 | -1.000 | -1.0              |

## B.2.8.4.2 Auxiliary Power Unit (APU) Formula(s)

## - Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$ 

APU<sub>POL</sub>: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)

APU: Number of Auxiliary Power Units
OH: Operation Hours for Each LTO (hour)

LTO: Number of LTOs

EF<sub>POL</sub>: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

B.2.8.5 Aircraft Engine Test Cell

B.2.8.5.1 Aircraft Engine Test Cell Assumptions

- Engine Test Cell

**Total Number of Aircraft Engines Tested Annually: 48** 

- Default Settings Used: No





- Annual Run-ups / Test Durations

Annual Run-ups (Per Aircraft Engine): 1
Idle Duration (mins): 12
Approach Duration (mins): 27
Intermediate Duration (mins): 9
Military Duration (mins): 12
After Burner Duration (mins): 0

## B.2.8.5.2 Aircraft Engine Test Cell Emission Factor(s)

## - See Aircraft & Engines Emission Factor(s)

## B.2.8.5.3 Aircraft Engine Test Cell Formula(s)

## - Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs)

TestCellPS<sub>POL</sub> = (TD / 60) \* (FC / 1000) \* EF \* NE \* ARU / 2000

TestCellPS<sub>POL</sub>: Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs)

TD: Test Duration (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pou

nds

EF: Emission Factor (lb/1000lb fuel)

NE: Total Number of Engines (For All Aircraft)
ARU: Annual Run-ups (Per Aircraft Engine)
2000: Conversion Factor pounds to TONs

## - Aircraft Engine Test Cell Emissions per Year

TestCellPS<sub>IDLE</sub> + TestCellPS<sub>APPROACH</sub> + TestCellPS<sub>INTERMEDIATE</sub> + TestCellPS<sub>MILITARY</sub> + TestCellPS<sub>AFTERBURN</sub>

TestCell: Aircraft Engine Test Cell Emissions (TONs)

TestCellPS<sub>IDLE</sub>: Aircraft Engine Test Cell Emissions for Idle Power Setting (TONs) TestCellPS<sub>APPROACH</sub>: Aircraft Engine Test Cell Emissions for Approach Power Setting (TONs)

TestCellPS<sub>INTERMEDIATE</sub>: Aircraft Engine Test Cell Emissions for Intermediate Power Setting (TONs)

TestCellPS<sub>MILITARY</sub>: Aircraft Engine Test Cell Emissions for Military Power Setting (TONs) TestCellPS<sub>AFTERBURN</sub>: Aircraft Engine Test Cell Emissions for After Burner Power Setting (TONs)

#### B.2.9 Aircraft

## B.2.9.1 General Information & Timeline Assumptions

#### - Add or Remove Activity from Baseline? Remove

## - Activity Location

County: Hillsborough

Regulatory Area(s): NOT IN A REGULATORY AREA





 Activity Title: Remove 24 KC-135R Aircraft from MacDill AFB, Florida - LTOs, APU, Engine Testing

## - Activity Description:

Remove 24 KC-135R Aircraft and associated operations (LTOs, APU, and Engine Testing) at MacDill AFB.

- Activity Start Date Start Month: 10 Start Year: 2028

- Activity End Date

Indefinite: Yes End Month: N/A End Year: N/A

- Activity Emissions:

| Pollutant       | Emissions Per Year<br>(TONs) |
|-----------------|------------------------------|
| VOC             | -0.158940                    |
| SO <sub>x</sub> | -2.136611                    |
| NOx             | -15.188473                   |
| CO              | -19.005545                   |
| PM 10           | -2.915565                    |

| Pollutant         | Emissions Per Year<br>(TONs) |
|-------------------|------------------------------|
| PM 2.5            | -1.090785                    |
| Pb                | 0.000000                     |
| NH <sub>3</sub>   | 0.000000                     |
| CO <sub>2</sub> e | -6457.8                      |
|                   |                              |

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

| Pollutant       | Emissions Per Year (TONs) |
|-----------------|---------------------------|
| VOC             | -0.150614                 |
| SO <sub>x</sub> | -1.956211                 |
| NO <sub>x</sub> | -13.634753                |
| CO              | -18.159451                |
| PM 10           | -2.682746                 |

| Pollutant         | Emissions Per Year<br>(TONs) |
|-------------------|------------------------------|
| PM 2.5            | -0.969441                    |
| Pb                | 0.00000                      |
| NH <sub>3</sub>   | 0.000000                     |
|                   |                              |
| CO <sub>2</sub> e | -5912.5                      |
|                   |                              |

- Activity Emissions | Test Cell part]:

| Pollutant       | Emissions Per Year |
|-----------------|--------------------|
|                 | (TONs)             |
| VOC             | -0.008326          |
| SO <sub>x</sub> | -0.180399          |
| NOx             | -1.553719          |
| CO              | -0.846094          |
| PM 10           | -0.232820          |

| Pollutant         | Emissions Per Year<br>(TONs) |
|-------------------|------------------------------|
| PM 2.5            | -0.121344                    |
| Pb                | 0.000000                     |
| NH <sub>3</sub>   | 0.000000                     |
| CO <sub>2</sub> e | -545.2                       |
|                   |                              |

B.2.9.2 Aircraft & Engines

B.2.9.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation: KC-135R
Engine Model: F108-CF-100
Primary Function: Transport - Bomber

Aircraft has After burn: No Number of Engines: 4





- Aircraft & Engine Surrogate

Is Aircraft & Engine a Surrogate? No

Original Aircraft Name: Original Engine Name:

## B.2.9.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

|              | Fuel<br>Flow | VOC  | SO <sub>x</sub> | NOx   | СО    | PM 10 | PM 2.5 | CO <sub>2</sub> e |
|--------------|--------------|------|-----------------|-------|-------|-------|--------|-------------------|
| ldle         | 1136.00      | 0.19 | 1.07            | 3.88  | 23.65 | 2.07  | 0.16   | 3234              |
| Approach     | 2547.00      | 0.06 | 1.07            | 5.73  | 8.57  | 1.55  | 0.76   | 3234              |
| Intermediate | 5650.00      | 0.03 | 1.07            | 11.04 | 2.32  | 0.65  | 0.36   | 3234              |
| Military     | 6458.00      | 0.03 | 1.07            | 12.05 | 0.36  | 1.59  | 1.02   | 3234              |
| After Burn   | 0.00         | 0.00 | 0.00            | 0.00  | 0.00  | 0.00  | 0.00   | 3234              |

B.2.9.3 Flight Operations

## B.2.9.3.1 Flight Operations Assumptions

- Flight Operations

Number of Aircraft: 24
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 631
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 0
Number of Annual Trim Test(s) per Aircraft: 1

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)

Taxi/Idle Out [Idle] (mins):10.16Takeoff [Military] (mins):1.41Takeoff [After Burn] (mins):0Climb Out [Intermediate] (mins):3.58Approach [Approach] (mins):10.4Taxi/Idle In [Idle] (mins):10.16

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test

Idle (mins):12Approach (mins):27Intermediate (mins):9Military (mins):12AfterBurn (mins):0

## B.2.9.3.2 Flight Operations Formula(s)

## - Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$ 

AEM<sub>POL</sub>: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)





60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

LTO: Number of Landing and Take-off Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

## - Aircraft Emissions for LTOs per Year

AELTO = AEMIDLE\_IN + AEMIDLE\_OUT + AEMAPPROACH + AEMCLIMBOUT + AEMTAKEOFF

AE<sub>LTO</sub>: Aircraft Emissions (TONs)

AEM<sub>IDLE\_IN</sub>: Aircraft Emissions for Idle-In Mode (TONs)
AEM<sub>IDLE\_OUT</sub>: Aircraft Emissions for Idle-Out Mode (TONs)
AEM<sub>APPROACH</sub>: Aircraft Emissions for Approach Mode (TONs)
AEM<sub>CLIMBOUT</sub>: Aircraft Emissions for Climb-Out Mode (TONs)
AEM<sub>TAKEOFF</sub>: Aircraft Emissions for Take-Off Mode (TONs)

## - Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$ 

AEM<sub>POL</sub>: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

TGO: Number of Touch-and-Go Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

## - Aircraft Emissions for TGOs per Year

AETGO = AEMAPPROACH + AEMCLIMBOUT + AEMTAKEOFF

AE<sub>TGO</sub>: Aircraft Emissions (TONs)

AEM<sub>APPROACH</sub>: Aircraft Emissions for Approach Mode (TONs) AEM<sub>CLIMBOUT</sub>: Aircraft Emissions for Climb-Out Mode (TONs) AEM<sub>TAKEOFF</sub>: Aircraft Emissions for Take-Off Mode (TONs)

#### - Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$ 

AEPS<sub>POL</sub>: Aircraft Emissions per Pollutant & Power Setting (TONs)

TD: Test Duration (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test

2000: Conversion Factor pounds to TONs





## - Aircraft Emissions for Trim per Year

AETRIM = AEPSIDLE + AEPSAPPROACH + AEPSINTERMEDIATE + AEPSMILITARY + AEPSAFTERBURN

AE<sub>TRIM</sub>: Aircraft Emissions (TONs)

AEPS<sub>IDLE</sub>: Aircraft Emissions for Idle Power Setting (TONs)

AEPS<sub>APPROACH</sub>: Aircraft Emissions for Approach Power Setting (TONs) AEPS<sub>INTERMEDIATE</sub>: Aircraft Emissions for Intermediate Power Setting (TONs)

AEPS<sub>MILITARY</sub>: Aircraft Emissions for Military Power Setting (TONs)

AEPS<sub>AFTERBURN</sub>: Aircraft Emissions for After Burner Power Setting (TONs)

B.2.9.4 Auxiliary Power Unit (APU)

B.2.9.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

| Number of | Operation      | Exempt  | Designation | Manufacturer |
|-----------|----------------|---------|-------------|--------------|
| APU per   | Hours for Each | Source? |             |              |
| Aircraft  | LTO            |         |             |              |

## B.2.9.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

|     |          | ( /  |     |     | /   |    |       |     |                   |
|-----|----------|------|-----|-----|-----|----|-------|-----|-------------------|
| Des | ignation | Fuel | VOC | SOx | NOx | CO | PM 10 | PM  | CO <sub>2</sub> e |
|     |          | Flow |     |     |     |    |       | 2.5 |                   |

## B.2.9.4.3 Auxiliary Power Unit (APU) Formula(s)

## - Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$ 

APU<sub>POL</sub>: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)

APU: Number of Auxiliary Power Units OH: Operation Hours for Each LTO (hour)

LTO: Number of LTOs

EF<sub>POL</sub>: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

B.2.9.5 Aircraft Engine Test Cell

B.2.9.5.1 Aircraft Engine Test Cell Assumptions

- Engine Test Cell

**Total Number of Aircraft Engines Tested Annually: 96** 

- Default Settings Used: No

- Annual Run-ups / Test Durations

Annual Run-ups (Per Aircraft Engine): 1
Idle Duration (mins): 12
Approach Duration (mins): 27
Intermediate Duration (mins): 9
Military Duration (mins): 12





#### After Burner Duration (mins):

B.2.9.5.2 Aircraft Engine Test Cell Emission Factor(s)

- See Aircraft & Engines Emission Factor(s)

B.2.9.5.3 Aircraft Engine Test Cell Formula(s)

## - Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs)

TestCellPS<sub>POL</sub> = (TD / 60) \* (FC / 1000) \* EF \* NE \* ARU / 2000

TestCellPS<sub>POL</sub>: Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs)

0

TD: Test Duration (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Total Number of Engines (For All Aircraft) ARU: Annual Run-ups (Per Aircraft Engine) 2000: Conversion Factor pounds to TONs

## - Aircraft Engine Test Cell Emissions per Year

TestCellPS<sub>IDLE</sub> + TestCellPS<sub>APPROACH</sub> + TestCellPS<sub>INTERMEDIATE</sub> + TestCellPS<sub>MILITARY</sub> + TestCellPS<sub>AFTERBURN</sub>

TestCell: Aircraft Engine Test Cell Emissions (TONs)

TestCellPS<sub>IDLE</sub>: Aircraft Engine Test Cell Emissions for Idle Power Setting (TONs)

TestCellPS<sub>APPROACH</sub>: Aircraft Engine Test Cell Emissions for Approach Power Setting (TONs)

TestCellPS<sub>INTERMEDIATE</sub>: Aircraft Engine Test Cell Emissions for Intermediate Power Setting (TONs)

TestCellPS<sub>MILITARY</sub>: Aircraft Engine Test Cell Emissions for Military Power Setting (TONs) TestCellPS<sub>AFTERBURN</sub>: Aircraft Engine Test Cell Emissions for After Burner Power Setting (TONs)

#### **B.2.10 Aircraft**

B.2.10.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Hillsborough

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: Beddown of 24 KC-46A Aircraft at MacDill AFB, Florida - TGOs

- Activity Description:

Beddown 24 KC-46A Aircraft at MacDill AFB - TGOs only

- Activity Start Date Start Month: 10





Start Year: 2028

- Activity End Date Indefinite: Yes End Month: N/A End Year: N/A

- Activity Emissions:

| riouvity Enmodicines |                           |  |  |  |  |
|----------------------|---------------------------|--|--|--|--|
| Pollutant            | <b>Emissions Per Year</b> |  |  |  |  |
|                      | (TONs)                    |  |  |  |  |
| VOC                  | 0.512713                  |  |  |  |  |
| SO <sub>x</sub>      | 5.941809                  |  |  |  |  |
| NOx                  | 106.494523                |  |  |  |  |
| CO                   | 6.688060                  |  |  |  |  |
| PM 10                | 0.334010                  |  |  |  |  |

| Pollutant         | Emissions Per Year<br>(TONs) |
|-------------------|------------------------------|
| PM 2.5            | 0.278479                     |
| Pb                | 0.000000                     |
| NH <sub>3</sub>   | 0.000000                     |
| CO <sub>2</sub> e | 17958.7                      |
|                   |                              |

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

| Pollutant       | Emissions Per Year |
|-----------------|--------------------|
|                 | (TONs)             |
| VOC             | 0.512713           |
| SO <sub>x</sub> | 5.941809           |
| NOx             | 106.494523         |
| CO              | 6.688060           |
| PM 10           | 0.334010           |

| Pollutant         | Emissions Per Year<br>(TONs) |
|-------------------|------------------------------|
| PM 2.5            | 0.278479                     |
| Pb                | 0.000000                     |
| NH <sub>3</sub>   | 0.000000                     |
| CO <sub>2</sub> e | 17958.7                      |
|                   |                              |

B.2.10.2 Aircraft & Engines

B.2.10.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

**Aircraft Designation**: KC-46A **Engine Model**: PW4062

**Primary Function:** Transport - Bomber

Aircraft has After burn: No Number of Engines: 2

- Aircraft & Engine Surrogate

Is Aircraft & Engine a Surrogate? No

Original Aircraft Name: Original Engine Name:

B.2.10.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

|              | Fuel     | voc   | SO <sub>x</sub> | NO <sub>x</sub> | СО    | PM 10 | PM 2.5 | CO <sub>2</sub> e |
|--------------|----------|-------|-----------------|-----------------|-------|-------|--------|-------------------|
|              | Flow     |       |                 |                 |       |       |        |                   |
| Idle         | 1666.68  | 12.49 | 1.07            | 3.78            | 42.61 | 0.11  | 0.10   | 3234              |
| Approach     | 5698.45  | 0.10  | 1.07            | 12.17           | 1.93  | 0.05  | 0.04   | 3234              |
| Intermediate | 16865.19 | 0.08  | 1.07            | 25.98           | 0.50  | 0.07  | 0.06   | 3234              |
| Military     | 21627.13 | 0.09  | 1.07            | 34.36           | 0.61  | 0.08  | 0.07   | 3234              |
| After Burn   | 0.00     | 0.00  | 0.00            | 0.00            | 0.00  | 0.00  | 0.00   | 3234              |





B.2.10.3 Flight Operations

B.2.10.3.1 Flight Operations Assumptions

- Flight Operations

Number of Aircraft: 24
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 0
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 5304
Number of Annual Trim Test(s) per Aircraft: 0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)

Taxi/Idle Out [Idle] (mins):0Takeoff [Military] (mins):0Takeoff [After Burn] (mins):0Climb Out [Intermediate] (mins):1.89Approach [Approach] (mins):5.43Taxi/Idle In [Idle] (mins):0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test

Idle (mins): 12
Approach (mins): 27
Intermediate (mins): 9
Military (mins): 12
AfterBurn (mins): 0

B.2.10.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$ 

AEM<sub>POL</sub>: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

LTO: Number of Landing and Take-off Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

AELTO = AEMIDLE\_IN + AEMIDLE\_OUT + AEMAPPROACH + AEMCLIMBOUT + AEMTAKEOFF

AE<sub>LTO</sub>: Aircraft Emissions (TONs)

AEM<sub>IDLE\_IN</sub>: Aircraft Emissions for Idle-In Mode (TONs) AEM<sub>IDLE\_OUT</sub>: Aircraft Emissions for Idle-Out Mode (TONs) AEM<sub>APPROACH</sub>: Aircraft Emissions for Approach Mode (TONs)





AEM<sub>CLIMBOUT</sub>: Aircraft Emissions for Climb-Out Mode (TONs) AEM<sub>TAKEOFF</sub>: Aircraft Emissions for Take-Off Mode (TONs)

## - Aircraft Emissions per Mode for TGOs per Year

AEM<sub>POL</sub> = (TIM / 60) \* (FC / 1000) \* EF \* NE \* TGO / 2000

AEM<sub>POL</sub>: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

TGO: Number of Touch-and-Go Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

## - Aircraft Emissions for TGOs per Year

AETGO = AEMAPPROACH + AEMCLIMBOUT + AEMTAKEOFF

AE<sub>TGO</sub>: Aircraft Emissions (TONs)

AEM<sub>APPROACH</sub>: Aircraft Emissions for Approach Mode (TONs) AEM<sub>CLIMBOUT</sub>: Aircraft Emissions for Climb-Out Mode (TONs) AEM<sub>TAKEOFF</sub>: Aircraft Emissions for Take-Off Mode (TONs)

## - Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$ 

AEPS<sub>POL</sub>: Aircraft Emissions per Pollutant & Power Setting (TONs)

TD: Test Duration (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test

2000: Conversion Factor pounds to TONs

#### - Aircraft Emissions for Trim per Year

AETRIM = AEPSIDLE + AEPSAPPROACH + AEPSINTERMEDIATE + AEPSMILITARY + AEPSAFTERBURN

AE<sub>TRIM</sub>: Aircraft Emissions (TONs)

AEPS<sub>IDLE</sub>: Aircraft Emissions for Idle Power Setting (TONs)

AEPSAPPROACH: Aircraft Emissions for Approach Power Setting (TONs)

AEPS<sub>INTERMEDIATE</sub>: Aircraft Emissions for Intermediate Power Setting (TONs)

AEPS<sub>MILITARY</sub>: Aircraft Emissions for Military Power Setting (TONs)

AEPS<sub>AFTERBURN</sub>: Aircraft Emissions for After Burner Power Setting (TONs)

B.2.10.4 Auxiliary Power Unit (APU)

B.2.10.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes





- Auxiliary Power Unit (APU) (default)

| Number of<br>APU per<br>Aircraft | Operation<br>Hours for Each<br>LTO | Exempt Source? | Designation    | Manufacturer   |
|----------------------------------|------------------------------------|----------------|----------------|----------------|
| 1                                | 0.87                               | No             | GTCP 331-200ER | Honeywell Inc. |

## B.2.10.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

| Designation    | Fuel<br>Flow | VOC   | SO <sub>x</sub> | NO <sub>x</sub> | СО    | PM 10  | PM<br>2.5 | CO <sub>2</sub> e |
|----------------|--------------|-------|-----------------|-----------------|-------|--------|-----------|-------------------|
| GTCP 331-200ER | 267.9        | 0.115 | 0.284           | 2.548           | 1.110 | -1.000 | -1.000    | -1.0              |

## B.2.10.4.3 Auxiliary Power Unit (APU) Formula(s)

## - Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$ 

APU<sub>POL</sub>: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)

APU: Number of Auxiliary Power Units OH: Operation Hours for Each LTO (hour)

LTO: Number of LTOs

EF<sub>POL</sub>: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

#### B.2.11 Aircraft

## B.2.11.1 General Information & Timeline Assumptions

## - Add or Remove Activity from Baseline? Remove

- Activity Location

County: Hillsborough

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: Remove 24 KC-135R Aircraft from MacDill AFB, Florida - TGOs

- Activity Description:

Remove KC-135R aircraft at MacDill AFB - TGOs only

- Activity Start Date

Start Month: 10 Start Year: 2028

- Activity End Date

Indefinite: Yes End Month: N/A End Year: N/A

- Activity Emissions:

| Pollutant | Emissions Per Year | Pollutant | Emissions Per Year |
|-----------|--------------------|-----------|--------------------|
|           | (TONs)             |           | (TONs)             |





| VOC             | -0.200695  |
|-----------------|------------|
| SO <sub>x</sub> | -3.579069  |
| NOx             | -19.166415 |
| CO              | -28.666000 |
| PM 10           | -5 187977  |

| PM 2.5            | -2.528763 |
|-------------------|-----------|
| Pb                | 0.000000  |
| NH <sub>3</sub>   | 0.000000  |
| CO <sub>2</sub> e | -10817.5  |
|                   |           |

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

| Pollutant       | <b>Emissions Per Year</b> |  |  |  |
|-----------------|---------------------------|--|--|--|
|                 | (TONs)                    |  |  |  |
| VOC             | -0.200695                 |  |  |  |
| SO <sub>x</sub> | -3.579069                 |  |  |  |
| NO <sub>x</sub> | -19.166415                |  |  |  |
| CO              | -28.666000                |  |  |  |
| PM 10           | -5.187977                 |  |  |  |

| Pollutant         | Emissions Per Year |
|-------------------|--------------------|
|                   | (TONs)             |
| PM 2.5            | -2.528763          |
| Pb                | 0.000000           |
| NH <sub>3</sub>   | 0.000000           |
| CO <sub>2</sub> e | -10817.5           |
|                   |                    |

B.2.11.2 Aircraft & Engines

B.2.11.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

Aircraft Designation: KC-135R
Engine Model: F108-CF-100
Primary Function: Transport - Bomber

Aircraft has After burn: No Number of Engines: 4

- Aircraft & Engine Surrogate

Is Aircraft & Engine a Surrogate? No

Original Aircraft Name: Original Engine Name:

B.2.11.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

|              | Fuel<br>Flow | VOC  | SO <sub>x</sub> | NO <sub>x</sub> | СО    | PM 10 | PM 2.5 | CO <sub>2</sub> e |
|--------------|--------------|------|-----------------|-----------------|-------|-------|--------|-------------------|
| Idle         | 1136.00      | 0.19 | 1.07            | 3.88            | 23.65 | 2.07  | 0.16   | 3234              |
| Approach     | 2547.00      | 0.06 | 1.07            | 5.73            | 8.57  | 1.55  | 0.76   | 3234              |
| Intermediate | 5650.00      | 0.03 | 1.07            | 11.04           | 2.32  | 0.65  | 0.36   | 3234              |
| Military     | 6458.00      | 0.03 | 1.07            | 12.05           | 0.36  | 1.59  | 1.02   | 3234              |
| After Burn   | 0.00         | 0.00 | 0.00            | 0.00            | 0.00  | 0.00  | 0.00   | 3234              |

B.2.11.3 Flight Operations

B.2.11.3.1 Flight Operations Assumptions

- Flight Operations

Number of Aircraft: 24
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 0
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 5130
Number of Annual Trim Test(s) per Aircraft: 0

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)





Taxi/Idle Out [Idle] (mins): 0
Takeoff [Military] (mins): 0
Takeoff [After Burn] (mins): 0
Climb Out [Intermediate] (mins): 0
Approach [Approach] (mins): 7.68
Taxi/Idle In [Idle] (mins): 0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

#### - Trim Test

Idle (mins): 12
Approach (mins): 27
Intermediate (mins): 9
Military (mins): 12
AfterBurn (mins): 0

## B.2.11.3.2 Flight Operations Formula(s)

#### - Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$ 

AEM<sub>POL</sub>: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

LTO: Number of Landing and Take-off Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

## - Aircraft Emissions for LTOs per Year

AELTO = AEMIDLE IN + AEMIDLE OUT + AEMAPPROACH + AEMCLIMBOUT + AEMTAKEOFF

AE<sub>LTO</sub>: Aircraft Emissions (TONs)

AEM<sub>IDLE\_IN</sub>: Aircraft Emissions for Idle-In Mode (TONs) AEM<sub>IDLE\_OUT</sub>: Aircraft Emissions for Idle-Out Mode (TONs) AEM<sub>APPROACH</sub>: Aircraft Emissions for Approach Mode (TONs) AEM<sub>CLIMBOUT</sub>: Aircraft Emissions for Climb-Out Mode (TONs) AEM<sub>TAKEOFF</sub>: Aircraft Emissions for Take-Off Mode (TONs)

## - Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$ 

AEM<sub>POL</sub>: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)





NE: Number of Engines

TGO: Number of Touch-and-Go Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

## - Aircraft Emissions for TGOs per Year

 $AE_{TGO} = AEM_{APPROACH} + AEM_{CLIMBOUT} + AEM_{TAKEOFF}$ 

AE<sub>TGO</sub>: Aircraft Emissions (TONs)

AEM<sub>APPROACH</sub>: Aircraft Emissions for Approach Mode (TONs) AEM<sub>CLIMBOUT</sub>: Aircraft Emissions for Climb-Out Mode (TONs) AEM<sub>TAKEOFF</sub>: Aircraft Emissions for Take-Off Mode (TONs)

## - Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$ 

AEPS<sub>POL</sub>: Aircraft Emissions per Pollutant & Power Setting (TONs)

TD: Test Duration (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test

2000: Conversion Factor pounds to TONs

## - Aircraft Emissions for Trim per Year

AETRIM = AEPSIDLE + AEPSAPPROACH + AEPSINTERMEDIATE + AEPSMILITARY + AEPSAFTERBURN

AE<sub>TRIM</sub>: Aircraft Emissions (TONs)

AEPS<sub>IDLE</sub>: Aircraft Emissions for Idle Power Setting (TONs)

AEPS<sub>APPROACH</sub>: Aircraft Emissions for Approach Power Setting (TONs) AEPS<sub>INTERMEDIATE</sub>: Aircraft Emissions for Intermediate Power Setting (TONs)

AEPS<sub>MILITARY</sub>: Aircraft Emissions for Military Power Setting (TONs)

AEPS<sub>AFTERBURN</sub>: Aircraft Emissions for After Burner Power Setting (TONs)

## B.2.11.4 Auxiliary Power Unit (APU)

## B.2.11.4.1 Auxiliary Power Unit (APU) Assumptions

## - Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

|                   | / ( - /                     |                |             |              |
|-------------------|-----------------------------|----------------|-------------|--------------|
| Number of APU per | Operation<br>Hours for Each | Exempt Source? | Designation | Manufacturer |
| Aircraft          | LTO                         |                |             |              |

#### B.2.11.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

| ruxinary romor om | · (  | 00.0 | 1010. (1.57     | · · · · <i>,</i> |    |       |     |                   |
|-------------------|------|------|-----------------|------------------|----|-------|-----|-------------------|
| Designation       | Fuel | VOC  | SO <sub>x</sub> | NO <sub>x</sub>  | CO | PM 10 | PM  | CO <sub>2</sub> e |
|                   | Flow |      |                 |                  |    |       | 2.5 |                   |





B.2.11.4.3 Auxiliary Power Unit (APU) Formula(s)

# - Auxiliary Power Unit (APU) Emissions per Year

APU<sub>POL</sub> = APU \* OH \* LTO \* EF<sub>POL</sub> / 2000

APU<sub>POL</sub>: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)

APU: Number of Auxiliary Power Units OH: Operation Hours for Each LTO (hour)

LTO: Number of LTOs

EF<sub>POL</sub>: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons





## B.3 Alternative 2 – ACAM Report ROAA

- **1. General Information:** The DAF's ACAM was used to perform an analysis to assess the potential air quality impacts associated with the action in accordance with the Air Force Manual 32-7002, *Environmental Compliance and Pollution Prevention*; the EIAP (32 CFR 989); and the GCR (40 CFR 93 Subpart B). This report provides a summary of the ACAM analysis.
- a. Action Location:

Base: FAIRCHILD AFB
State: Washington
County(s): Spokane

Regulatory Area(s): NOT IN A REGULATORY AREA

b. Action Title: KC-46A Main Operating Base #6 Beddown

c. Project Number/s (if applicable): Alternative 2: KC-46A Beddown at Fairchild AFB, Washington

d. Projected Action Start Date: 10/2025

e. Action Description:

Alternative 2 would base 24 KC-46A aircraft in two squadrons of 12 PAA at Fairchild AFB as an active duty, Continental United States location for the KC-46A MOB 6 beddown. The KC-46A beddown would occur in two stages: beddown and operational. The beddown stage would involve construction/retrofit of required facilities, infrastructure, and prepared surfaces, which includes renovation, alteration, and demolition. The beddown stage would also include preparing support facilities for new personnel and students to support the mission. The operational stage would involve conducting day-to-day activities (e.g., operational missions, maintenance) at the installation, including flight operations and training in the existing regional airspace.

f. Point of Contact:

Name: Carolyn Hein Title: Contractor Organization: HDR EOC

Email:

Phone Number: (484) 612-1100

**2. Air Impact Analysis:** Based on the attainment status at the action location, the requirements of the General Conformity Rule are:

|   | applicable     |
|---|----------------|
| X | not applicable |

Total net direct and indirect emissions associated with the action were estimated through ACAM on a calendar-year basis for the start of the action through achieving "steady state" (i.e., net gain/loss upon action fully implemented) emissions. The ACAM analysis used the latest and most accurate emission estimation techniques available; all algorithms, emission factors, and methodologies used are described in detail in the DAF's Air Emissions Guide for Air Force Stationary Sources, Air Emissions Guide for Air Force Mobile Sources, and Air Emissions Guide for Air Force Transitory Sources.





"Insignificance Indicators" were used in the analysis to provide an indication of the significance of potential impacts to air quality based on current ambient air quality relative to the NAAQSs. These insignificance indicators are the 250 ton/year PSD major source threshold for actions occurring in areas that are "Clearly Attainment" (i.e., not within 5 percent of any NAAQS), and the GCR *de minimis* values (25 ton/year for lead and 100 ton/year for all other criteria pollutants) for actions occurring in areas that are "Near Nonattainment" (i.e., within 5 percent of any NAAQS). These indicators do not define a significant impact; however, they do provide a threshold to identify actions that are insignificant. Any action with net emissions below the insignificance indicators for all criteria pollutant is considered so insignificant that the action will not cause or contribute to an exceedance on one or more NAAQSs. For further detail on insignificance indicators see Chapter 4 of the *Air Force Air Quality Environmental Impact Analysis Process (EIAP) Guide, Volume II - Advanced Assessments*.

The action's net emissions for every year through achieving steady state were compared against the insignificance indicator and are summarized below.

#### **Analysis Summary:**

#### 2025

| Pollutant          | Action Emissions | INSIGNIFICANCE INDICATOR |                        |  |  |
|--------------------|------------------|--------------------------|------------------------|--|--|
|                    | (ton/yr)         | Indicator (ton/yr)       | Exceedance (Yes or No) |  |  |
| NOT IN A REGULATOR | Y AREA           |                          | •                      |  |  |
| VOC                | 0.477            | 250                      | No                     |  |  |
| NOx                | 2.595            | 250                      | No                     |  |  |
| CO                 | 3.734            | 250                      | No                     |  |  |
| SOx                | 0.009            | 250                      | No                     |  |  |
| PM 10              | 72.854           | 250                      | No                     |  |  |
| PM 2.5             | 0.098            | 250                      | No                     |  |  |
| Pb                 | 0.000            | 25                       | No                     |  |  |
| NH3                | 0.003            | 250                      | No                     |  |  |
| CO2e               | 856.7            |                          |                        |  |  |

## 2026

| Pollutant          | Action Emissions | INSIGNIFICANCE INDICATOR |                        |  |  |
|--------------------|------------------|--------------------------|------------------------|--|--|
|                    | (ton/yr)         | Indicator (ton/yr)       | Exceedance (Yes or No) |  |  |
| NOT IN A REGULATOR | Y AREA           |                          |                        |  |  |
| VOC                | 1.111            | 250                      | No                     |  |  |
| NOx                | 6.362            | 250                      | No                     |  |  |
| CO                 | 8.825            | 250                      | No                     |  |  |
| SOx                | 0.019            | 250                      | No                     |  |  |
| PM 10              | 21.365           | 250                      | No                     |  |  |
| PM 2.5             | 0.245            | 250                      | No                     |  |  |
| Pb                 | 0.000            | 25                       | No                     |  |  |
| NH3                | 0.008            | 250                      | No                     |  |  |
| CO2e               | 1883.3           |                          |                        |  |  |





## 2027

| Pollutant          | Action Emissions | INSIGNIFICAN       | CE INDICATOR           |
|--------------------|------------------|--------------------|------------------------|
|                    | (ton/yr)         | Indicator (ton/yr) | Exceedance (Yes or No) |
| NOT IN A REGULATOR | Y AREA           |                    |                        |
| VOC                | 1.071            | 250                | No                     |
| NOx                | 6.181            | 250                | No                     |
| CO                 | 8.491            | 250                | No                     |
| SOx                | 0.018            | 250                | No                     |
| PM 10              | 0.241            | 250                | No                     |
| PM 2.5             | 0.239            | 250                | No                     |
| Pb                 | 0.000            | 25                 | No                     |
| NH3                | 0.008            | 250                | No                     |
| CO2e               | 1802.0           |                    |                        |

## 2028

| Pollutant          | Action Emissions | INSIGNIFICANCE INDICATOR |                        |  |  |
|--------------------|------------------|--------------------------|------------------------|--|--|
|                    | (ton/yr)         | Indicator (ton/yr)       | Exceedance (Yes or No) |  |  |
| NOT IN A REGULATOR | Y AREA           |                          |                        |  |  |
| VOC                | 14.613           | 250                      | No                     |  |  |
| NOx                | 39.994           | 250                      | No                     |  |  |
| CO                 | 7.869            | 250                      | No                     |  |  |
| SOx                | 1.185            | 250                      | No                     |  |  |
| PM 10              | -1.217           | 250                      | No                     |  |  |
| PM 2.5             | -0.368           | 250                      | No                     |  |  |
| Pb                 | 0.000            | 25                       | No                     |  |  |
| NH3                | 0.018            | 250                      | No                     |  |  |
| CO2e               | 5351.4           |                          |                        |  |  |

2029 - (Steady State)

| Pollutant          | Action Emissions | INSIGNIFICANCE INDICATOR |                    |  |
|--------------------|------------------|--------------------------|--------------------|--|
|                    | (ton/yr)         | Indicator (ton/yr)       | Exceedance (Yes or |  |
|                    |                  |                          | No)                |  |
| NOT IN A REGULATOR | Y AREA           |                          |                    |  |
| VOC                | 7.979            | 250                      | No                 |  |
| NOx                | 141.432          | 250                      | No                 |  |
| CO                 | 5.977            | 250                      | No                 |  |
| SOx                | 4.683            | 250                      | No                 |  |
| PM 10              | -5.590           | 250                      | No                 |  |
| PM 2.5             | -2.189           | 250                      | No                 |  |
| Pb                 | 0.000            | 25                       | No                 |  |
| NH3                | 0.047            | 250                      | No                 |  |
| CO2e               | 15996.8          |                          |                    |  |

None of estimated annual net emissions associated with this action are above the insignificance indicators, indicating no significant impact to air quality. Therefore, the action would not cause or contribute to an exceedance on one or more NAAQSs. No further air assessment is needed.

Carolyn Hein, Contractor DATE





# B.4 Alternative 2 – Detail ACAM Report for the Beddown of 24 KC-46A PAA at Fairchild AFB

#### **B.4.1 General Information**

- Action Location

Base: FAIRCHILD AFB
State: Washington
County(s): Spokane

Regulatory Area(s): NOT IN A REGULATORY AREA

- Action Title: KC-46A Main Operating Base #6 Beddown

 Project Number/s (if applicable): Alternative 2: KC-46A Beddown at Fairchild AFB, Washington

- Projected Action Start Date: 10 / 2025

## - Action Purpose and Need:

The purpose of the Proposed Action is to recapitalize aging tanker aircraft (KC-135 Stratotanker) currently used by the Department of the Air Force with the KC-46A model to better address current and future mission requirements, offer expanded capability, and provide life-cycle cost savings in comparison to continued operation of existing KC-135 Stratotanker.

The Proposed Action to establish Main Operating Base #6 (MOB 6) is intended to provide a fully capable, combat operational KC-46A aerial refueling force at the MOB 6 location(s) to accomplish aerial refueling and related missions. The mission-ready KC-46A squadrons would allow immediate and effective employment in exercises, peacekeeping operations, contingencies, and combat. Bedding down and operating the KC-46A would allow DAF to maintain combat capability and mission readiness as U.S. military resources commit to missions throughout the world.

The MOB 6 beddown of the KC-46A is needed because the KC-46A would provide mission essential capabilities currently lacking in the existing tanker fleet, resulting in fully capable, combat-operational tanker force to accomplish aerial refueling and related worldwide missions. Additional capabilities include receiver capability, night vision, multi-point refueling, connectivity to command and control assets, and defensive protection.

## - Action Description:

Alternative 2 would base 24 KC-46A aircraft in two squadrons of 12 Primary Aerospace Vehicle Authorization (PAA) at Fairchild AFB as an active duty, continental United States location for the KC-46A Main Operating Base #6 (MOB 6) beddown. The KC-46A beddown would occur in two stages: a beddown stage and an operational stage. The beddown stage would involve construction/retrofit of required facilities, infrastructure, and prepared surfaces, which includes renovation, alteration, and demolition. The beddown stage would also include preparing support facilities for new personnel and students to support the mission. The operational stage would involve conducting day-to-day activities (e.g., operational missions, maintenance) at the installation, including flight operations and training in the existing regional airspace

#### - Point of Contact





Name: Carolyn Hein
Title: Contractor
Organization: HDR EOC

Email:

**Phone Number:** (484) 612-1100

- Activity List:

|     | Activity Type             | Activity Title                                                  |
|-----|---------------------------|-----------------------------------------------------------------|
| 2.  | Aircraft                  | Beddown 24 KC-46A Aircraft at Fairchild AFB, Washington - LTOs, |
|     |                           | APU, and Engine Testing                                         |
| 3.  | Aircraft                  | Remove 24 KC-135R Aircraft from Fairchild AFB, Washington -     |
|     |                           | LTOs, APU, Engine Testing                                       |
| 4.  | Construction / Demolition | New Facility Construction                                       |
| 5.  | Construction / Demolition | Facility Renovations                                            |
| 6.  | Construction / Demolition | Facility and Airfield Improvements                              |
| 7.  | Personnel                 | Addition of Personnel                                           |
| 8.  | Heating                   | Heating of New Facilities                                       |
| 9.  | Paint Booth               | KC-46A Maintenance Hangar Paint Booth                           |
| 10. | Aircraft                  | Beddown 24 KC-46A Aircraft at Fairchild AFB, Washington - TGOs  |
| 11. | Aircraft                  | Remove 24 KC-135R Aircraft from Fairchild AFB, Washington -     |
|     |                           | TGOs                                                            |

Emission factors and air emission estimating methods come from the United States Air Force's Air Emissions Guide for Air Force Stationary Sources, Air Emissions Guide for Air Force Mobile Sources, and Air Emissions Guide for Air Force Transitory Sources.

## **B.4.2** Aircraft

B.4.2.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location County: Spokane

Regulatory Area(s): NOT IN A REGULATORY AREA

 Activity Title: Beddown 24 KC-46A Aircraft at Fairchild AFB, Washington - LTOs, APU, and Engine Testing

#### - Activity Description:

Beddown 24 KC-46A Aircraft at Fairchild AFB, and associated LTOs, APU, and Engine Runup Testing operations. Assumed aerospace ground equipment (AGE) used for the KC-46A that would be added would be similar to the AGE used for the KC-135A that would be removed. Therefore, AGE-related emissions added from KC-46A beddown would be similar to the reduction in AGE-related emissions from KC-135 removal. Therefore, it is assumed no net emissions change from AGE.

- Activity Start Date Start Month: 10 Start Year: 2028

- Activity End Date Indefinite: Yes





End Month: N/A End Year: N/A

- Activity Emissions:

| Pollutant       | Emissions Per Year (TONs) |
|-----------------|---------------------------|
| VOC             | 6.941093                  |
| SO <sub>x</sub> | 3.227617                  |
| NO <sub>x</sub> | 62.605160                 |
| CO              | 25.669911                 |
| PM 10           | 0.217618                  |

| Pollutant         | Emissions Per Year<br>(TONs) |
|-------------------|------------------------------|
| PM 2.5            | 0.188962                     |
| Pb                | 0.000000                     |
| NH <sub>3</sub>   | 0.000000                     |
| CO <sub>2</sub> e | 9267.4                       |
|                   |                              |

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

| Pollutant       | Emissions Per Year<br>(TONs) |
|-----------------|------------------------------|
| VOC             | 6.820312                     |
| SO <sub>x</sub> | 2.977164                     |
| NO <sub>x</sub> | 56.681652                    |
| CO              | 25.116568                    |
| PM 10           | 0.201106                     |

| Pollutant         | Emissions Per Year (TONs) |
|-------------------|---------------------------|
| PM 2.5            | 0.174790                  |
| Pb                | 0.000000                  |
| NH <sub>3</sub>   | 0.000000                  |
| CO <sub>2</sub> e | 8510.4                    |
|                   |                           |

- Activity Emissions [Test Cell part]:

| Treating        |                    |  |  |  |  |  |
|-----------------|--------------------|--|--|--|--|--|
| Pollutant       | Emissions Per Year |  |  |  |  |  |
|                 | (TONs)             |  |  |  |  |  |
| VOC             | 0.120782           |  |  |  |  |  |
| SO <sub>x</sub> | 0.250453           |  |  |  |  |  |
| NOx             | 5.923508           |  |  |  |  |  |
| CO              | 0.553342           |  |  |  |  |  |
| PM 10           | 0.016512           |  |  |  |  |  |
|                 |                    |  |  |  |  |  |

| Pollutant         | Emissions Per Year<br>(TONs) |
|-------------------|------------------------------|
| PM 2.5            | 0.014171                     |
| Pb                | 0.000000                     |
| NH <sub>3</sub>   | 0.000000                     |
| CO <sub>2</sub> e | 757.0                        |
|                   |                              |

B.4.2.2 Aircraft & Engines

B.4.2.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

**Aircraft Designation**: KC-46A **Engine Model**: PW4062

**Primary Function:** Transport - Bomber

**Aircraft has After burn:** No **Number of Engines:** 2

- Aircraft & Engine Surrogate

Is Aircraft & Engine a Surrogate? No

Original Aircraft Name: Original Engine Name:

B.4.2.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

| All ordit & Eligino Elinosiono i dotoro (ib/ 1000ib idoi) |              |       |                 |       |       |       |        |                   |
|-----------------------------------------------------------|--------------|-------|-----------------|-------|-------|-------|--------|-------------------|
|                                                           | Fuel<br>Flow | VOC   | SO <sub>x</sub> | NOx   | СО    | PM 10 | PM 2.5 | CO <sub>2</sub> e |
| Idle                                                      | 1666.68      | 12.49 | 1.07            | 3.78  | 42.61 | 0.11  | 0.10   | 3234              |
| Approach                                                  | 5698.45      | 0.10  | 1.07            | 12.17 | 1.93  | 0.05  | 0.04   | 3234              |
| Intermediate                                              | 16865.19     | 0.08  | 1.07            | 25.98 | 0.50  | 0.07  | 0.06   | 3234              |
| Military                                                  | 21627.13     | 0.09  | 1.07            | 34.36 | 0.61  | 0.08  | 0.07   | 3234              |





| Λ ft = D     |      | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0004 |
|--------------|------|------|------|------|------|------|------|------|
| After Burn ( | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 3234 |

B.4.2.3 Flight Operations

B.4.2.3.1 Flight Operations Assumptions

- Flight Operations

Number of Aircraft: 24
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 1306.5
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 0
Number of Annual Trim Test(s) per Aircraft: 1

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)

Taxi/Idle Out [Idle] (mins):7.125Takeoff [Military] (mins):1.74Takeoff [After Burn] (mins):0Climb Out [Intermediate] (mins):1.24Approach [Approach] (mins):4.88Taxi/Idle In [Idle] (mins):7.125

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test

Idle (mins): 12
Approach (mins): 27
Intermediate (mins): 9
Military (mins): 12
AfterBurn (mins): 0

B.4.2.3.2 Flight Operations Formula(s)

- Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$ 

AEM<sub>POI</sub>: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

LTO: Number of Landing and Take-off Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

- Aircraft Emissions for LTOs per Year

AELTO = AEMIDLE IN + AEMIDLE OUT + AEMAPPROACH + AEMCLIMBOUT + AEMTAKEOFF

AE<sub>LTO</sub>: Aircraft Emissions (TONs)

AEM<sub>IDLE\_IN</sub>: Aircraft Emissions for Idle-In Mode (TONs)





AEM<sub>IDLE\_OUT</sub>: Aircraft Emissions for Idle-Out Mode (TONs) AEM<sub>APPROACH</sub>: Aircraft Emissions for Approach Mode (TONs) AEM<sub>CLIMBOUT</sub>: Aircraft Emissions for Climb-Out Mode (TONs) AEM<sub>TAKEOFF</sub>: Aircraft Emissions for Take-Off Mode (TONs)

## - Aircraft Emissions per Mode for TGOs per Year

AEM<sub>POL</sub> = (TIM / 60) \* (FC / 1000) \* EF \* NE \* TGO / 2000

AEM<sub>POL</sub>: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

TGO: Number of Touch-and-Go Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

## - Aircraft Emissions for TGOs per Year

AE<sub>TGO</sub> = AEM<sub>APPROACH</sub> + AEM<sub>CLIMBOUT</sub> + AEM<sub>TAKEOFF</sub>

AE<sub>TGO</sub>: Aircraft Emissions (TONs)

AEM<sub>APPROACH</sub>: Aircraft Emissions for Approach Mode (TONs) AEM<sub>CLIMBOUT</sub>: Aircraft Emissions for Climb-Out Mode (TONs) AEM<sub>TAKEOFF</sub>: Aircraft Emissions for Take-Off Mode (TONs)

## - Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$ 

AEPS<sub>POL</sub>: Aircraft Emissions per Pollutant & Power Setting (TONs)

TD: Test Duration (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test

2000: Conversion Factor pounds to TONs

## - Aircraft Emissions for Trim per Year

AETRIM = AEPSIDLE + AEPSAPPROACH + AEPSINTERMEDIATE + AEPSMILITARY + AEPSAFTERBURN

AE<sub>TRIM</sub>: Aircraft Emissions (TONs)

AEPS<sub>IDLE</sub>: Aircraft Emissions for Idle Power Setting (TONs)

AEPS<sub>APPROACH</sub>: Aircraft Emissions for Approach Power Setting (TONs) AEPS<sub>INTERMEDIATE</sub>: Aircraft Emissions for Intermediate Power Setting (TONs)

AEPS<sub>MILITARY</sub>: Aircraft Emissions for Military Power Setting (TONs)

AEPS<sub>AFTERBURN</sub>: Aircraft Emissions for After Burner Power Setting (TONs)





B.4.2.4 Auxiliary Power Unit (APU)

B.4.2.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

| Number of<br>APU per<br>Aircraft | Operation<br>Hours for Each<br>LTO | Exempt Source? | Designation    | Manufacturer   |
|----------------------------------|------------------------------------|----------------|----------------|----------------|
| 1                                | 0.87                               | No             | GTCP 331-200ER | Honeywell Inc. |

## 2.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

| Designation    | Fuel<br>Flow | voc   | SO <sub>x</sub> | NOx   | СО    | PM 10  | PM 2.5 | CO <sub>2</sub> e |
|----------------|--------------|-------|-----------------|-------|-------|--------|--------|-------------------|
| GTCP 331-200ER | 267.9        | 0.115 | 0.284           | 2.548 | 1.110 | -1.000 | -1.000 | -1.0              |

## B.4.2.4.2 Auxiliary Power Unit (APU) Formula(s)

## - Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$ 

APU<sub>POL</sub>: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)

APU: Number of Auxiliary Power Units OH: Operation Hours for Each LTO (hour)

LTO: Number of LTOs

EF<sub>POL</sub>: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

B.4.2.5 Aircraft Engine Test Cell

B.4.2.5.1 Aircraft Engine Test Cell Assumptions

- Engine Test Cell

**Total Number of Aircraft Engines Tested Annually: 48** 

- Default Settings Used: No

- Annual Run-ups / Test Durations

Annual Run-ups (Per Aircraft Engine): 1
Idle Duration (mins): 12
Approach Duration (mins): 27
Intermediate Duration (mins): 9
Military Duration (mins): 12
After Burner Duration (mins): 0

## B.4.2.5.2 Aircraft Engine Test Cell Emission Factor(s)

- See Aircraft & Engines Emission Factor(s)

## B.4.2.5.3 Aircraft Engine Test Cell Formula(s)

- Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs)





TestCellPS<sub>POL</sub> = (TD / 60) \* (FC / 1000) \* EF \* NE \* ARU / 2000

TestCellPS<sub>POL</sub>: Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs)

TD: Test Duration (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Total Number of Engines (For All Aircraft)
ARU: Annual Run-ups (Per Aircraft Engine)
2000: Conversion Factor pounds to TONs

## - Aircraft Engine Test Cell Emissions per Year

TestCellPS<sub>IDLE</sub> + TestCellPS<sub>APPROACH</sub> + TestCellPS<sub>INTERMEDIATE</sub> + TestCellPS<sub>MILITARY</sub> + TestCellPS<sub>AFTERBURN</sub>

TestCell: Aircraft Engine Test Cell Emissions (TONs)

TestCellPS<sub>IDLE</sub>: Aircraft Engine Test Cell Emissions for Idle Power Setting (TONs) TestCellPS<sub>APPROACH</sub>: Aircraft Engine Test Cell Emissions for Approach Power Setting (TONs)

TestCellPS<sub>INTERMEDIATE</sub>: Aircraft Engine Test Cell Emissions for Intermediate Power Setting (TONs)

TestCellPS<sub>MILITARY</sub>: Aircraft Engine Test Cell Emissions for Military Power Setting (TONs) TestCellPS<sub>AFTERBURN</sub>: Aircraft Engine Test Cell Emissions for After Burner Power Setting (TONs)

#### **B.4.3** Aircraft

#### B.4.3.1 General Information & Timeline Assumptions

## - Add or Remove Activity from Baseline? Remove

## - Activity Location

County: Spokane

Regulatory Area(s): NOT IN A REGULATORY AREA

 Activity Title: Remove 24 KC-135R Aircraft from Fairchild AFB, Washington - LTOs, APU, Engine Testing

#### - Activity Description:

Remove 24 KC-135R aircraft and associated operations (LTOs, APU, and Engine Run-up Testing) from Fairchild AFB, Washington.

## - Activity Start Date

Start Month: 10 Start Year: 2028

#### - Activity End Date

Indefinite: Yes End Month: N/A End Year: N/A





- Activity Emissions:

| Pollutant       | Emissions Per Year<br>(TONs) |
|-----------------|------------------------------|
| VOC             | -0.126188                    |
| SO <sub>x</sub> | -1.461731                    |
| NO <sub>x</sub> | -9.604017                    |
| CO              | -15.337217                   |
| PM 10           | -2.210900                    |

| Pollutant         | Emissions Per Year<br>(TONs) |
|-------------------|------------------------------|
| PM 2.5            | -0.762207                    |
| Pb                | 0.000000                     |
| NH <sub>3</sub>   | 0.000000                     |
| CO <sub>2</sub> e | -4418.0                      |
|                   |                              |

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

| Pollutant       | Emissions Per Year |  |  |  |  |  |
|-----------------|--------------------|--|--|--|--|--|
|                 | (TONs)             |  |  |  |  |  |
| VOC             | -0.117862          |  |  |  |  |  |
| SO <sub>x</sub> | -1.281332          |  |  |  |  |  |
| NOx             | -8.050297          |  |  |  |  |  |
| CO              | -14.491123         |  |  |  |  |  |
| PM 10           | -1.978081          |  |  |  |  |  |

| Pollutant         | Emissions Per Year |
|-------------------|--------------------|
|                   | (TONs)             |
| PM 2.5            | -0.640863          |
| Pb                | 0.000000           |
| NH <sub>3</sub>   | 0.000000           |
| CO <sub>2</sub> e | -3872.7            |
|                   |                    |

- Activity Emissions [Test Cell part]:

| Pollutant       | Emissions Per Year<br>(TONs) |  |  |  |  |
|-----------------|------------------------------|--|--|--|--|
| VOC             | -0.008326                    |  |  |  |  |
| SO <sub>x</sub> | -0.180399                    |  |  |  |  |
| NO <sub>x</sub> | -1.553719                    |  |  |  |  |
| CO              | -0.846094                    |  |  |  |  |
| PM 10           | -0.232820                    |  |  |  |  |

| Pollutant         | Emissions Per Year<br>(TONs) |
|-------------------|------------------------------|
| PM 2.5            | -0.121344                    |
| Pb                | 0.000000                     |
| NH <sub>3</sub>   | 0.000000                     |
| CO <sub>2</sub> e | -545.2                       |
|                   |                              |

B.4.3.2 Aircraft & Engines

B.4.3.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

**Aircraft Designation:** KC-135R **Engine Model:** F108-CF-100

**Primary Function:** Transport - Bomber

Aircraft has After burn: No Number of Engines: 4

- Aircraft & Engine Surrogate

Is Aircraft & Engine a Surrogate? No

Original Aircraft Name: Original Engine Name:

B.4.3.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

|              | Fuel<br>Flow | VOC  | SO <sub>x</sub> | NOx   | со    | PM 10 | PM 2.5 | CO <sub>2</sub> e |
|--------------|--------------|------|-----------------|-------|-------|-------|--------|-------------------|
| Idle         | 1136.00      | 0.19 | 1.07            | 3.88  | 23.65 | 2.07  | 0.16   | 3234              |
| Approach     | 2547.00      | 0.06 | 1.07            | 5.73  | 8.57  | 1.55  | 0.76   | 3234              |
| Intermediate | 5650.00      | 0.03 | 1.07            | 11.04 | 2.32  | 0.65  | 0.36   | 3234              |
| Military     | 6458.00      | 0.03 | 1.07            | 12.05 | 0.36  | 1.59  | 1.02   | 3234              |
| After Burn   | 0.00         | 0.00 | 0.00            | 0.00  | 0.00  | 0.00  | 0.00   | 3234              |





B.4.3.3 Flight Operations

## B.4.3.3.1 Flight Operations Assumptions

## - Flight Operations

Number of Aircraft: 24
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 811
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 0
Number of Annual Trim Test(s) per Aircraft: 1

- Default Settings Used: No

## - Flight Operations TIMs (Time In Mode)

Taxi/Idle Out [Idle] (mins):7.125Takeoff [Military] (mins):0.83Takeoff [After Burn] (mins):0Climb Out [Intermediate] (mins):0.61Approach [Approach] (mins):5.13Taxi/Idle In [Idle] (mins):7.125

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

#### - Trim Test

Idle (mins):12Approach (mins):27Intermediate (mins):9Military (mins):12AfterBurn (mins):0

#### B.4.3.3.2 Flight Operations Formula(s)

## - Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$ 

AEM<sub>POL</sub>: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

LTO: Number of Landing and Take-off Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

## - Aircraft Emissions for LTOs per Year

AELTO = AEMIDLE\_IN + AEMIDLE\_OUT + AEMAPPROACH + AEMCLIMBOUT + AEMTAKEOFF

AE<sub>LTO</sub>: Aircraft Emissions (TONs)

AEM<sub>IDLE\_IN</sub>: Aircraft Emissions for Idle-In Mode (TONs) AEM<sub>IDLE\_OUT</sub>: Aircraft Emissions for Idle-Out Mode (TONs) AEM<sub>APPROACH</sub>: Aircraft Emissions for Approach Mode (TONs)





AEM<sub>CLIMBOUT</sub>: Aircraft Emissions for Climb-Out Mode (TONs) AEM<sub>TAKEOFF</sub>: Aircraft Emissions for Take-Off Mode (TONs)

## - Aircraft Emissions per Mode for TGOs per Year

AEM<sub>POL</sub> = (TIM / 60) \* (FC / 1000) \* EF \* NE \* TGO / 2000

AEM<sub>POL</sub>: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

TGO: Number of Touch-and-Go Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

## - Aircraft Emissions for TGOs per Year

AETGO = AEMAPPROACH + AEMCLIMBOUT + AEMTAKEOFF

AE<sub>TGO</sub>: Aircraft Emissions (TONs)

AEM<sub>APPROACH</sub>: Aircraft Emissions for Approach Mode (TONs) AEM<sub>CLIMBOUT</sub>: Aircraft Emissions for Climb-Out Mode (TONs) AEM<sub>TAKEOFF</sub>: Aircraft Emissions for Take-Off Mode (TONs)

## - Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$ 

AEPS<sub>POL</sub>: Aircraft Emissions per Pollutant & Power Setting (TONs)

TD: Test Duration (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test

2000: Conversion Factor pounds to TONs

#### - Aircraft Emissions for Trim per Year

AETRIM = AEPSIDLE + AEPSAPPROACH + AEPSINTERMEDIATE + AEPSMILITARY + AEPSAFTERBURN

AE<sub>TRIM</sub>: Aircraft Emissions (TONs)

AEPS<sub>IDLE</sub>: Aircraft Emissions for Idle Power Setting (TONs)

AEPS<sub>APPROACH</sub>: Aircraft Emissions for Approach Power Setting (TONs) AEPS<sub>INTERMEDIATE</sub>: Aircraft Emissions for Intermediate Power Setting (TONs)

AEPS<sub>MILITARY</sub>: Aircraft Emissions for Military Power Setting (TONs)

AEPS<sub>AFTERBURN</sub>: Aircraft Emissions for After Burner Power Setting (TONs)

B.4.3.4 Auxiliary Power Unit (APU)

B.4.3.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes





- Auxiliary Power Unit (APU) (default)

| Number of APU per | Operation<br>Hours for Each | Exempt Source? | Designation | Manufacturer |
|-------------------|-----------------------------|----------------|-------------|--------------|
| Aircraft          | LTO                         |                |             |              |

## B.4.3.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

| <b>5</b> 1 41 | ì <b>-</b> / . | 1/00 |                 | 110             |    | D11 10 |     |                   |
|---------------|----------------|------|-----------------|-----------------|----|--------|-----|-------------------|
| Designation   | Fuel           | VOC  | SO <sub>x</sub> | NO <sub>x</sub> | CO | PM 10  | PM  | CO <sub>2</sub> e |
|               |                |      | X               |                 |    |        |     |                   |
|               | Flow           |      |                 |                 |    |        | 2.5 |                   |
|               | 1 10 44        |      |                 |                 |    |        | 2.0 |                   |

## B.4.3.4.3 Auxiliary Power Unit (APU) Formula(s)

# - Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$ 

APU<sub>POL</sub>: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)

APU: Number of Auxiliary Power Units OH: Operation Hours for Each LTO (hour)

LTO: Number of LTOs

EF<sub>POL</sub>: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

B.4.3.5 Aircraft Engine Test Cell

B.4.3.5.1 Aircraft Engine Test Cell Assumptions

- Engine Test Cell

**Total Number of Aircraft Engines Tested Annually: 96** 

- Default Settings Used: No

- Annual Run-ups / Test Durations

Annual Run-ups (Per Aircraft Engine): 1
Idle Duration (mins): 12
Approach Duration (mins): 27
Intermediate Duration (mins): 9
Military Duration (mins): 12
After Burner Duration (mins): 0

## B.4.3.5.2 Aircraft Engine Test Cell Emission Factor(s)

## - See Aircraft & Engines Emission Factor(s)

## B.4.3.5.3 Aircraft Engine Test Cell Formula(s)

## - Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs)

TestCellPS<sub>POL</sub> = (TD / 60) \* (FC / 1000) \* EF \* NE \* ARU / 2000

TestCellPS<sub>POL</sub>: Aircraft Engine Test Cell Emissions per Pollutant & Power Setting (TONs)

TD: Test Duration (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)





1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Total Number of Engines (For All Aircraft) ARU: Annual Run-ups (Per Aircraft Engine) 2000: Conversion Factor pounds to TONs

# - Aircraft Engine Test Cell Emissions per Year

TestCellPS<sub>IDLE</sub> + TestCellPS<sub>APPROACH</sub> + TestCellPS<sub>INTERMEDIATE</sub> + TestCellPS<sub>MILITARY</sub> + TestCellPS<sub>AFTERBURN</sub>

TestCell: Aircraft Engine Test Cell Emissions (TONs)

TestCellPS<sub>IDLE</sub>: Aircraft Engine Test Cell Emissions for Idle Power Setting (TONs) TestCellPS<sub>APPROACH</sub>: Aircraft Engine Test Cell Emissions for Approach Power Setting (TONs)

TestCellPS<sub>INTERMEDIATE</sub>: Aircraft Engine Test Cell Emissions for Intermediate Power Setting (TONs)

TestCellPS<sub>MILITARY</sub>: Aircraft Engine Test Cell Emissions for Military Power Setting (TONs) TestCellPS<sub>AFTERBURN</sub>: Aircraft Engine Test Cell Emissions for After Burner Power Setting (TONs)

#### **B.4.4** Construction/Demolition

## B.4.4.1 General Information & Timeline Assumptions

- Activity Location

County: Spokane

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: New Facility Construction

## - Activity Description:

Construction of New Facilities:

2-Bay Fuel Cell and Wash Rack Hangar with Back Shops (178,013 square feet)

Mission Planning Center (4,238 square feet)

Installation Deployment Readiness Center (21,435 square feet)

Squadron Operations Facility (2 KC-46A ANG) (29,745 square feet)

Supply Warehouse (81,616 square feet)

Total = 315,047 square feet

Assumed no materials are required to be hauled on- or off-site due to site grading; excavated spoils will be used on-site. Conservatively assumed all site grading for new facility construction is done in FY2028.

Also assumed the following: (1) no new emergency generator(s), or if any were needed for new facilities, their emissions would be offset by removing a generator(s) that was supporting KC-135 operations/facilities; (2) For special vehicles and non-road combustion equipment needed to support KC-46A operations/facilities, their operation/emissions would be equally offset by eliminating or reusing vehicles and non-road equipment that were supporting KC-135 operations/facilities; (3) KC-46A deicing, fuel cell maintenance, composite repair, NDI testing, and fuel storage/dispensing operations/emissions would be equally offset by eliminating those corresponding operations/emissions supporting the KC-135 operations/facilities.





- Activity Start Date

Start Month: 10 Start Month: 2025

- Activity End Date

Indefinite: False End Month: 9 End Month: 2028

- Activity Emissions:

| ,               |                        |  |  |  |  |  |  |  |
|-----------------|------------------------|--|--|--|--|--|--|--|
| Pollutant       | Total Emissions (TONs) |  |  |  |  |  |  |  |
| VOC             | 4.684260               |  |  |  |  |  |  |  |
| SO <sub>x</sub> | 0.020011               |  |  |  |  |  |  |  |
| NOx             | 6.127169               |  |  |  |  |  |  |  |
| CO              | 8.065448               |  |  |  |  |  |  |  |
| PM 10           | 22.148181              |  |  |  |  |  |  |  |

| Pollutant         | Total Emissions (TONs) |
|-------------------|------------------------|
| PM 2.5            | 0.206927               |
| Pb                | 0.000000               |
| NH <sub>3</sub>   | 0.009927               |
| CO <sub>2</sub> e | 1963.9                 |
|                   |                        |

B.4.4.2 Site Grading Phase

B.4.4.2.1 Site Grading Phase Timeline Assumptions

- Phase Start Date

Start Month: 10 Start Quarter: 1 Start Year: 2025

- Phase Duration

Number of Month: 3 Number of Days: 0

## B.4.4.2.2 Site Grading Phase Assumptions

- General Site Grading Information

Area of Site to be Graded (ft<sup>2</sup>): 315047

Amount of Material to be Hauled On-Site (yd³): 0
Amount of Material to be Hauled Off-Site (yd³): 0

- Site Grading Default Settings

Default Settings Used: Yes
Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

| Equipment Name                         | Number Of<br>Equipment | Hours Per Day |
|----------------------------------------|------------------------|---------------|
| Graders Composite                      | 1                      | 8             |
| Other Construction Equipment Composite | 1                      | 8             |
| Rubber Tired Dozers Composite          | 1                      | 8             |
| Tractors/Loaders/Backhoes Composite    | 2                      | 7             |

- Vehicle Exhaust

Average Hauling Truck Capacity (yd³): 20 (default)
Average Hauling Truck Round Trip Commute (mile): 20 (default)





- Vehicle Exhaust Vehicle Mixture (%)

|      | LDGV | LDGT | HDGV | LDDV | LDDT | HDDV   | MC |
|------|------|------|------|------|------|--------|----|
| POVs | 0    | 0    | 0    | 0    | 0    | 100.00 | 0  |

## - Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

|      | LDGV  | LDGT  | HDGV | LDDV | LDDT | HDDV | MC |
|------|-------|-------|------|------|------|------|----|
| POVs | 50.00 | 50.00 | 0    | 0    | 0    | 0    | 0  |

## B.4.4.2.3 Site Grading Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

| <b>Graders Composi</b> | Graders Composite                      |                 |                 |        |        |        |        |                   |  |  |  |  |
|------------------------|----------------------------------------|-----------------|-----------------|--------|--------|--------|--------|-------------------|--|--|--|--|
|                        | VOC                                    | SO <sub>x</sub> | NO <sub>x</sub> | CO     | PM 10  | PM 2.5 | CH₄    | CO₂e              |  |  |  |  |
| Emission Factors       | 0.0676                                 | 0.0014          | 0.3314          | 0.5695 | 0.0147 | 0.0147 | 0.0061 | 132.89            |  |  |  |  |
| Other Constructio      | Other Construction Equipment Composite |                 |                 |        |        |        |        |                   |  |  |  |  |
|                        | VOC                                    | SOx             | NOx             | CO     | PM 10  | PM 2.5 | CH₄    | CO <sub>2</sub> e |  |  |  |  |
| Emission Factors       | 0.0442                                 | 0.0012          | 0.2021          | 0.3473 | 0.0068 | 0.0068 | 0.0039 | 122.60            |  |  |  |  |
| Rubber Tired Doze      | ers Compo                              | osite           |                 |        |        |        |        |                   |  |  |  |  |
|                        | VOC                                    | SO <sub>x</sub> | NO <sub>x</sub> | CO     | PM 10  | PM 2.5 | CH₄    | CO <sub>2</sub> e |  |  |  |  |
| Emission Factors       | 0.1671                                 | 0.0024          | 1.0824          | 0.6620 | 0.0418 | 0.0418 | 0.0150 | 239.45            |  |  |  |  |
| Tractors/Loaders/      | Tractors/Loaders/Backhoes Composite    |                 |                 |        |        |        |        |                   |  |  |  |  |
|                        | VOC                                    | SOx             | NOx             | CO     | PM 10  | PM 2.5 | CH₄    | CO₂e              |  |  |  |  |
| Emission Factors       | 0.0335                                 | 0.0007          | 0.1857          | 0.3586 | 0.0058 | 0.0058 | 0.0030 | 66.872            |  |  |  |  |

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

|      | VOC     | SO <sub>x</sub> | NOx     | CO      | PM 10   | PM 2.5  | Pb | NH <sub>3</sub> | CO <sub>2</sub> e |
|------|---------|-----------------|---------|---------|---------|---------|----|-----------------|-------------------|
| LDGV | 000.278 | 000.002         | 000.219 | 003.276 | 800.000 | 000.007 |    | 000.023         | 00320.329         |
| LDGT | 000.351 | 000.003         | 000.382 | 004.545 | 000.010 | 000.009 |    | 000.024         | 00414.211         |
| HDGV | 000.705 | 000.005         | 001.074 | 015.763 | 000.025 | 000.022 |    | 000.045         | 00763.488         |
| LDDV | 000.122 | 000.003         | 000.133 | 002.396 | 000.004 | 000.004 |    | 800.000         | 00309.634         |
| LDDT | 000.266 | 000.004         | 000.384 | 004.133 | 000.007 | 000.007 |    | 800.000         | 00440.653         |
| HDDV | 000.498 | 000.013         | 005.110 | 001.743 | 000.169 | 000.156 |    | 000.028         | 01479.227         |
| MC   | 002.339 | 000.003         | 000.821 | 013.581 | 000.029 | 000.025 |    | 000.054         | 00399.711         |

## B.4.4.2.4 Site Grading Phase Formula(s)

# - Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$ 

PM10<sub>FD</sub>: Fugitive Dust PM 10 Emissions (TONs)

20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)

ACRE: Total acres (acres)

WD: Number of Total Work Days (days) 2000: Conversion Factor pounds to tons

# - Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$ 

CEE<sub>POL</sub>: Construction Exhaust Emissions (TONs)

NE: Number of Equipment

WD: Number of Total Work Days (days)





H: Hours Worked per Day (hours)

EF<sub>POL</sub>: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

## - Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$ 

VMT<sub>VE</sub>: Vehicle Exhaust Vehicle Miles Travel (miles) HA<sub>OnSite</sub>: Amount of Material to be Hauled On-Site (yd³) HA<sub>OffSite</sub>: Amount of Material to be Hauled Off-Site (yd³)

HC: Average Hauling Truck Capacity (yd³)

(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POL</sub>: Vehicle Emissions (TONs)

VMT<sub>VE</sub>: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds  $EF_{POL}$ : Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons

## - Worker Trips Emissions per Phase

VMT<sub>WT</sub> = WD \* WT \* 1.25 \* NE

VMT<sub>WT</sub>: Worker Trips Vehicle Miles Travel (miles)

WD: Number of Total Work Days (days)

WT: Average Worker Round Trip Commute (mile)

1.25: Conversion Factor Number of Construction Equipment to Number of Works

NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POI</sub>: Vehicle Emissions (TONs)

VMT<sub>WT</sub>: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF<sub>POL</sub>: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons

#### B.4.4.3 Trenching/Excavating Phase

#### B.4.4.3.1 Trenching / Excavating Phase Timeline Assumptions

#### - Phase Start Date

Start Month: 10 Start Quarter: 1 Start Year: 2025

#### - Phase Duration

Number of Month: 4 Number of Days: 0





## B.4.4.3.2 Trenching / Excavating Phase Assumptions

- General Trenching/Excavating Information

Area of Site to be Trenched/Excavated (ft<sup>2</sup>): 315047

Amount of Material to be Hauled On-Site (yd³): 0
Amount of Material to be Hauled Off-Site (yd³): 0

- Trenching Default Settings

**Default Settings Used:** Yes

Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

| Equipment Name                               | Number Of<br>Equipment | Hours Per Day |
|----------------------------------------------|------------------------|---------------|
| Excavators Composite                         | 2                      | 8             |
| Other General Industrial Equipment Composite | 1                      | 8             |
| Tractors/Loaders/Backhoes Composite          | 1                      | 8             |

#### - Vehicle Exhaust

Average Hauling Truck Capacity (yd³): 20 (default)

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

|      | LDGV | LDGT | HDGV | LDDV | LDDT | HDDV   | MC |
|------|------|------|------|------|------|--------|----|
| POVs | 0    | 0    | 0    | 0    | 0    | 100.00 | 0  |

## - Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

|      | LDGV  | LDGT  | HDGV | LDDV | LDDT | HDDV | MC |
|------|-------|-------|------|------|------|------|----|
| POVs | 50.00 | 50.00 | 0    | 0    | 0    | 0    | 0  |

## B.4.4.3.3 Trenching / Excavating Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

| <b>Graders Composit</b> | Graders Composite |                 |                 |        |        |        |        |                   |
|-------------------------|-------------------|-----------------|-----------------|--------|--------|--------|--------|-------------------|
|                         | VOC               | SO <sub>x</sub> | NO <sub>x</sub> | CO     | PM 10  | PM 2.5 | CH₄    | CO₂e              |
| Emission Factors        | 0.0676            | 0.0014          | 0.3314          | 0.5695 | 0.0147 | 0.0147 | 0.0061 | 132.89            |
| Other Constructio       | n Equipm          | ent Compo       | osite           |        |        |        |        |                   |
|                         | VOC               | SO <sub>x</sub> | NO <sub>x</sub> | CO     | PM 10  | PM 2.5 | CH₄    | CO₂e              |
| Emission Factors        | 0.0442            | 0.0012          | 0.2021          | 0.3473 | 0.0068 | 0.0068 | 0.0039 | 122.60            |
| Rubber Tired Doze       | ers Compo         | osite           |                 |        |        |        |        |                   |
|                         | VOC               | SO <sub>x</sub> | NO <sub>x</sub> | CO     | PM 10  | PM 2.5 | CH₄    | CO <sub>2</sub> e |
| Emission Factors        | 0.1671            | 0.0024          | 1.0824          | 0.6620 | 0.0418 | 0.0418 | 0.0150 | 239.45            |
| Tractors/Loaders/       | <b>Backhoes</b>   | Composit        | te              |        |        |        |        |                   |
|                         | VOC               | SO <sub>x</sub> | NO <sub>x</sub> | CO     | PM 10  | PM 2.5 | CH₄    | CO₂e              |
| Emission Factors        | 0.0335            | 0.0007          | 0.1857          | 0.3586 | 0.0058 | 0.0058 | 0.0030 | 66.872            |

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

|      | VOC     | SOx     | NOx     | CO      | PM 10   | PM 2.5  | Pb | NH <sub>3</sub> | CO <sub>2</sub> e |
|------|---------|---------|---------|---------|---------|---------|----|-----------------|-------------------|
| LDGV | 000.278 | 000.002 | 000.219 | 003.276 | 800.000 | 000.007 |    | 000.023         | 00320.329         |
| LDGT | 000.351 | 000.003 | 000.382 | 004.545 | 000.010 | 000.009 |    | 000.024         | 00414.211         |





| HDGV | 000.705 | 000.005 | 001.074 | 015.763 | 000.025 | 000.022 | 000.045 | 00763.488 |
|------|---------|---------|---------|---------|---------|---------|---------|-----------|
| LDDV | 000.122 | 000.003 | 000.133 | 002.396 | 000.004 | 000.004 | 800.000 | 00309.634 |
| LDDT | 000.266 | 000.004 | 000.384 | 004.133 | 000.007 | 000.007 | 800.000 | 00440.653 |
| HDDV | 000.498 | 000.013 | 005.110 | 001.743 | 000.169 | 000.156 | 000.028 | 01479.227 |
| MC   | 002.339 | 000.003 | 000.821 | 013.581 | 000.029 | 000.025 | 000.054 | 00399.711 |

## B.4.4.3.4 Trenching / Excavating Phase Formula(s)

# - Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$ 

PM10<sub>FD</sub>: Fugitive Dust PM 10 Emissions (TONs)

20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)

ACRE: Total acres (acres)

WD: Number of Total Work Days (days) 2000: Conversion Factor pounds to tons

## - Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$ 

CEE<sub>POL</sub>: Construction Exhaust Emissions (TONs)

NE: Number of Equipment

WD: Number of Total Work Days (days)

H: Hours Worked per Day (hours)

EF<sub>POL</sub>: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

## - Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$ 

VMT<sub>VE</sub>: Vehicle Exhaust Vehicle Miles Travel (miles) HA<sub>OnSite</sub>: Amount of Material to be Hauled On-Site (yd³) HA<sub>OffSite</sub>: Amount of Material to be Hauled Off-Site (yd³)

HC: Average Hauling Truck Capacity (yd³)

(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POL</sub>: Vehicle Emissions (TONs)

VMT<sub>VE</sub>: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF<sub>POL</sub>: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons

## - Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$ 

VMT<sub>WT</sub>: Worker Trips Vehicle Miles Travel (miles)

WD: Number of Total Work Days (days)

WT: Average Worker Round Trip Commute (mile)





1.25: Conversion Factor Number of Construction Equipment to Number of Works

**NE**: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POL</sub>: Vehicle Emissions (TONs)

VMT<sub>VE</sub>: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF<sub>POL</sub>: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons

B.4.4.4 Building Construction Phase

B.4.4.4.1 Building Construction Phase Timeline Assumptions

- Phase Start Date

Start Month: 10 Start Quarter: 1 Start Year: 2025

- Phase Duration

Number of Month: 36 Number of Days: 0

# B.4.4.4.2 Building Construction Phase Assumptions

- General Building Construction Information

**Building Category:** Office or Industrial

Area of Building (ft²): 315047 Height of Building (ft): 35 Number of Units: N/A

- Building Construction Default Settings

**Default Settings Used:** Yes

Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

| Equipment Name                      | Number Of<br>Equipment | Hours Per Day |
|-------------------------------------|------------------------|---------------|
| Cranes Composite                    | 1                      | 7             |
| Forklifts Composite                 | 2                      | 7             |
| Generator Sets Composite            | 1                      | 8             |
| Tractors/Loaders/Backhoes Composite | 1                      | 8             |
| Welders Composite                   | 3                      | 8             |

#### - Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

|      | LDGV | LDGT | HDGV | LDDV | LDDT | HDDV   | MC |
|------|------|------|------|------|------|--------|----|
| POVs | 0    | 0    | 0    | 0    | 0    | 100.00 | 0  |

#### - Worker Trips





Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

|      | LDGV  | LDGT  | HDGV | LDDV | LDDT | HDDV | MC |
|------|-------|-------|------|------|------|------|----|
| POVs | 50.00 | 50.00 | 0    | 0    | 0    | 0    | 0  |

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

|      | LDGV | LDGT | HDGV | LDDV | LDDT | HDDV   | MC |
|------|------|------|------|------|------|--------|----|
| POVs | 0    | 0    | 0    | 0    | 0    | 100.00 | 0  |

# B.4.4.4.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

| <b>Cranes Composite</b>  | 9               |                 |        |        |        |        |                 |                   |
|--------------------------|-----------------|-----------------|--------|--------|--------|--------|-----------------|-------------------|
|                          | VOC             | SOx             | NOx    | CO     | PM 10  | PM 2.5 | CH₄             | CO <sub>2</sub> e |
| Emission Factors         | 0.0680          | 0.0013          | 0.4222 | 0.3737 | 0.0143 | 0.0143 | 0.0061          | 128.77            |
| <b>Forklifts Composi</b> | te              |                 |        |        |        |        |                 |                   |
|                          | VOC             | SOx             | NOx    | CO     | PM 10  | PM 2.5 | CH₄             | CO₂e              |
| Emission Factors         | 0.0236          | 0.0006          | 0.0859 | 0.2147 | 0.0025 | 0.0025 | 0.0021          | 54.449            |
| <b>Generator Sets Co</b> | omposite        |                 |        |        |        |        |                 |                   |
|                          | VOC             | SOx             | NOx    | CO     | PM 10  | PM 2.5 | CH₄             | CO <sub>2</sub> e |
| Emission Factors         | 0.0287          | 0.0006          | 0.2329 | 0.2666 | 0.0080 | 0.0080 | 0.0025          | 61.057            |
| Tractors/Loaders/        | <b>Backhoes</b> | Composit        | te     |        |        |        |                 |                   |
|                          | VOC             | SO <sub>x</sub> | NOx    | CO     | PM 10  | PM 2.5 | CH <sub>4</sub> | CO <sub>2</sub> e |
| Emission Factors         | 0.0335          | 0.0007          | 0.1857 | 0.3586 | 0.0058 | 0.0058 | 0.0030          | 66.872            |
| Welders Composi          | te              |                 |        |        |        |        |                 |                   |
|                          | VOC             | SOx             | NOx    | CO     | PM 10  | PM 2.5 | CH₄             | CO <sub>2</sub> e |
| Emission Factors         | 0.0214          | 0.0003          | 0.1373 | 0.1745 | 0.0051 | 0.0051 | 0.0019          | 25.650            |

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

|      | VOC     | SO <sub>x</sub> | NOx     | CO      | PM 10   | PM 2.5  | Pb | NH <sub>3</sub> | CO <sub>2</sub> e |
|------|---------|-----------------|---------|---------|---------|---------|----|-----------------|-------------------|
| LDGV | 000.278 | 000.002         | 000.219 | 003.276 | 800.000 | 000.007 |    | 000.023         | 00320.329         |
| LDGT | 000.351 | 000.003         | 000.382 | 004.545 | 000.010 | 000.009 |    | 000.024         | 00414.211         |
| HDGV | 000.705 | 000.005         | 001.074 | 015.763 | 000.025 | 000.022 |    | 000.045         | 00763.488         |
| LDDV | 000.122 | 000.003         | 000.133 | 002.396 | 000.004 | 000.004 |    | 800.000         | 00309.634         |
| LDDT | 000.266 | 000.004         | 000.384 | 004.133 | 000.007 | 000.007 |    | 800.000         | 00440.653         |
| HDDV | 000.498 | 000.013         | 005.110 | 001.743 | 000.169 | 000.156 |    | 000.028         | 01479.227         |
| MC   | 002.339 | 000.003         | 000.821 | 013.581 | 000.029 | 000.025 |    | 000.054         | 00399.711         |

## B.4.4.4.4 Building Construction Phase Formula(s)

## - Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$ 

CEE<sub>POL</sub>: Construction Exhaust Emissions (TONs)

NE: Number of Equipment

WD: Number of Total Work Days (days)

H: Hours Worked per Day (hours)

EF<sub>POL</sub>: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons





## - Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$ 

VMT<sub>VE</sub>: Vehicle Exhaust Vehicle Miles Travel (miles)

BA: Area of Building (ft²) BH: Height of Building (ft)

(0.42 / 1000): Conversion Factor ft<sup>3</sup> to trips (0.42 trip / 1000 ft<sup>3</sup>) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POL</sub>: Vehicle Emissions (TONs)

VMT<sub>VE</sub>: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds  $EF_{POL}$ : Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%)

- Worker Trips Emissions per Phase

VMT<sub>WT</sub> = WD \* WT \* 1.25 \* NE

VMT<sub>WT</sub>: Worker Trips Vehicle Miles Travel (miles)

WD: Number of Total Work Days (days)

2000: Conversion Factor pounds to tons

WT: Average Worker Round Trip Commute (mile)

1.25: Conversion Factor Number of Construction Equipment to Number of Works

**NE: Number of Construction Equipment** 

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POL</sub>: Vehicle Emissions (TONs)

VMT<sub>WT</sub>: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF<sub>POL</sub>: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons

- Vender Trips Emissions per Phase

 $VMT_{VT} = BA * BH * (0.38 / 1000) * HT$ 

VMT<sub>VT</sub>: Vender Trips Vehicle Miles Travel (miles)

BA: Area of Building (ft²) BH: Height of Building (ft)

(0.38 / 1000): Conversion Factor ft<sup>3</sup> to trips (0.38 trip / 1000 ft<sup>3</sup>) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POL</sub>: Vehicle Emissions (TONs)

VMT<sub>VT</sub>: Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF<sub>POL</sub>: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%)





2000: Conversion Factor pounds to tons

## B.4.4.5 Architectural Coatings Phase

## B.4.4.5.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date

Start Month: 9 Start Quarter: 1 Start Year: 2028

- Phase Duration

Number of Month: 1 Number of Days: 0

## B.4.4.5.2 Architectural Coatings Phase Assumptions

## - General Architectural Coatings Information

Building Category: Non-Residential

**Total Square Footage (ft²):** 315047 **Number of Units:** N/A

# - Architectural Coatings Default Settings

**Default Settings Used:** Yes

Average Day(s) worked per week: 5 (default)

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

|      | LDGV  | LDGT  | HDGV | LDDV | LDDT | HDDV | MC |
|------|-------|-------|------|------|------|------|----|
| POVs | 50.00 | 50.00 | 0    | 0    | 0    | 0    | 0  |

## B.4.4.5.3 Architectural Coatings Phase Emission Factor(s)

- Worker Trips Emission Factors (grams/mile)

|      | VOC     | SO <sub>x</sub> | NO <sub>x</sub> | CO      | PM 10   | PM 2.5  | Pb | NH <sub>3</sub> | CO <sub>2</sub> e |
|------|---------|-----------------|-----------------|---------|---------|---------|----|-----------------|-------------------|
| LDGV | 000.278 | 000.002         | 000.219         | 003.276 | 800.000 | 000.007 |    | 000.023         | 00320.329         |
| LDGT | 000.351 | 000.003         | 000.382         | 004.545 | 000.010 | 000.009 |    | 000.024         | 00414.211         |
| HDGV | 000.705 | 000.005         | 001.074         | 015.763 | 000.025 | 000.022 |    | 000.045         | 00763.488         |
| LDDV | 000.122 | 000.003         | 000.133         | 002.396 | 000.004 | 000.004 |    | 800.000         | 00309.634         |
| LDDT | 000.266 | 000.004         | 000.384         | 004.133 | 000.007 | 000.007 |    | 800.000         | 00440.653         |
| HDDV | 000.498 | 000.013         | 005.110         | 001.743 | 000.169 | 000.156 |    | 000.028         | 01479.227         |
| MC   | 002.339 | 000.003         | 000.821         | 013.581 | 000.029 | 000.025 |    | 000.054         | 00399.711         |

## B.4.4.5.4 Architectural Coatings Phase Formula(s)

# - Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$ 

VMT<sub>WT</sub>: Worker Trips Vehicle Miles Travel (miles)

1: Conversion Factor man days to trips (1 trip / 1 man \* day)

WT: Average Worker Round Trip Commute (mile)

PA: Paint Area (ft<sup>2</sup>)





800: Conversion Factor square feet to man days ( 1 ft<sup>2</sup> / 1 man \* day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POL</sub>: Vehicle Emissions (TONs)

VMT<sub>WT</sub>: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF<sub>POL</sub>: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons

## - Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$ 

VOC<sub>AC</sub>: Architectural Coating VOC Emissions (TONs)

BA: Area of Building (ft<sup>2</sup>)

2.0: Conversion Factor total area to coated area (2.0 ft<sup>2</sup> coated area / total area)

0.0116: Emission Factor (lb/ft<sup>2</sup>)

2000: Conversion Factor pounds to tons

#### **B.4.5** Construction/Demolition

B.4.5.1 General Information & Timeline Assumptions

- Activity Location

County: Spokane

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: Facility Renovations

## - Activity Description:

Facility Renovations [Assumed 25% of total square footage (652,671 square feet) is construction to equate the renovations]:

KC-46A AMXS & 2 AMUs; Building 2090 (27,076 square feet)

KC-135 AMXS & 2 AMUs; Building 2097 (25,254 square feet)

Squadron Operations Facility (2 KC-46A AD ARSs); Building 2005 (23,892 square feet)

Squadron Operations Facility (2 KC-135 AD ARSs); Building 2007 (26,326 square feet)

4-Bay Hangar with Backshops; Building 2050 (463,498 square feet)

DASH-21, AME, ATGL, Seat Pallet, Engine Storage; Building 1003 (31,499 square feet)

AGE MX; Building 1013 (27,563 square feet)

KC-46A CTK; Building 1017 (27,563 square feet)

Enclosed water fill station for deicing operations (4,679 square feet)

Total square footage = 652,671 square feet (25 percent of total square footage = 163,167.75 square feet).

Assumed 652,671 square feet would require architectural coatings.

# - Activity Start Date

Start Month: 10 Start Month: 2025





- Activity End Date

Indefinite: False End Month: 9 End Month: 2028

- Activity Emissions:

| ,               |                        |
|-----------------|------------------------|
| Pollutant       | Total Emissions (TONs) |
| VOC             | 8.339394               |
| SO <sub>x</sub> | 0.014455               |
| NO <sub>x</sub> | 4.547789               |
| CO              | 6.314027               |
| PM 10           | 0.154533               |

| Pollutant         | Total Emissions (TONs) |
|-------------------|------------------------|
| PM 2.5            | 0.153051               |
| Pb                | 0.000000               |
| NH <sub>3</sub>   | 0.006879               |
| CO <sub>2</sub> e | 1407.8                 |
|                   |                        |

B.4.5.2 Building Construction Phase

B.4.5.2.1 Building Construction Phase Timeline Assumptions

- Phase Start Date

Start Month: 10 Start Quarter: 1 Start Year: 2025

- Phase Duration

Number of Month: 36 Number of Days: 0

## B.4.5.2.2 Building Construction Phase Assumptions

- General Building Construction Information

Building Category: Office or Industrial

**Area of Building (ft<sup>2</sup>):** 163167.75

Height of Building (ft): 35 Number of Units: N/A

- Building Construction Default Settings

**Default Settings Used:** Yes

Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

| Equipment Name                      | Number Of<br>Equipment | Hours Per Day |  |  |  |  |  |  |
|-------------------------------------|------------------------|---------------|--|--|--|--|--|--|
| Cranes Composite                    | 1                      | 6             |  |  |  |  |  |  |
| Forklifts Composite                 | 2                      | 6             |  |  |  |  |  |  |
| Generator Sets Composite            | 1                      | 8             |  |  |  |  |  |  |
| Tractors/Loaders/Backhoes Composite | 1                      | 8             |  |  |  |  |  |  |
| Welders Composite                   | 3                      | 8             |  |  |  |  |  |  |

## - Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

|      | LDGV | LDGT | HDGV | LDDV | LDDT | HDDV   | MC |
|------|------|------|------|------|------|--------|----|
| POVs | 0    | 0    | 0    | 0    | 0    | 100.00 | 0  |





- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

|      | LDGV  | LDGT  | HDGV | LDDV | LDDT | HDDV | MC |
|------|-------|-------|------|------|------|------|----|
| POVs | 50.00 | 50.00 | 0    | 0    | 0    | 0    | 0  |

- Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

|      | LDGV | LDGT | HDGV | LDDV | LDDT | HDDV   | MC |
|------|------|------|------|------|------|--------|----|
| POVs | 0    | 0    | 0    | 0    | 0    | 100.00 | 0  |

## B.4.5.2.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

| <b>Cranes Composite</b>  | Cranes Composite |                 |                 |        |        |        |        |                   |  |  |  |
|--------------------------|------------------|-----------------|-----------------|--------|--------|--------|--------|-------------------|--|--|--|
|                          | VOC              | SO <sub>x</sub> | NO <sub>x</sub> | CO     | PM 10  | PM 2.5 | CH₄    | CO <sub>2</sub> e |  |  |  |
| Emission Factors         | 0.0680           | 0.0013          | 0.4222          | 0.3737 | 0.0143 | 0.0143 | 0.0061 | 128.77            |  |  |  |
| <b>Forklifts Composi</b> | te               |                 |                 |        |        |        |        |                   |  |  |  |
|                          | VOC              | SO <sub>x</sub> | NO <sub>x</sub> | CO     | PM 10  | PM 2.5 | CH₄    | CO <sub>2</sub> e |  |  |  |
| Emission Factors         | 0.0236           | 0.0006          | 0.0859          | 0.2147 | 0.0025 | 0.0025 | 0.0021 | 54.449            |  |  |  |
| <b>Generator Sets Co</b> | omposite         |                 |                 |        |        |        |        |                   |  |  |  |
|                          | VOC              | SO <sub>x</sub> | NO <sub>x</sub> | CO     | PM 10  | PM 2.5 | CH₄    | CO <sub>2</sub> e |  |  |  |
| Emission Factors         | 0.0287           | 0.0006          | 0.2329          | 0.2666 | 0.0080 | 0.0080 | 0.0025 | 61.057            |  |  |  |
| Tractors/Loaders/        | Backhoes         | Composit        | te              |        |        |        |        |                   |  |  |  |
|                          | VOC              | SO <sub>x</sub> | NO <sub>x</sub> | CO     | PM 10  | PM 2.5 | CH₄    | CO₂e              |  |  |  |
| Emission Factors         | 0.0335           | 0.0007          | 0.1857          | 0.3586 | 0.0058 | 0.0058 | 0.0030 | 66.872            |  |  |  |
| Welders Composite        |                  |                 |                 |        |        |        |        |                   |  |  |  |
| -                        | VOC              | SO <sub>x</sub> | NO <sub>x</sub> | CO     | PM 10  | PM 2.5 | CH₄    | CO <sub>2</sub> e |  |  |  |
| Emission Factors         | 0.0214           | 0.0003          | 0.1373          | 0.1745 | 0.0051 | 0.0051 | 0.0019 | 25.650            |  |  |  |

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

|      | vollidio Extiduot a violikoi ilipo Elillodioni i dotoro (granio/ilillo) |                 |                 |         |         |         |    |                 |                   |
|------|-------------------------------------------------------------------------|-----------------|-----------------|---------|---------|---------|----|-----------------|-------------------|
|      | VOC                                                                     | SO <sub>x</sub> | NO <sub>x</sub> | CO      | PM 10   | PM 2.5  | Pb | NH <sub>3</sub> | CO <sub>2</sub> e |
| LDGV | 000.278                                                                 | 000.002         | 000.219         | 003.276 | 800.000 | 000.007 |    | 000.023         | 00320.329         |
| LDGT | 000.351                                                                 | 000.003         | 000.382         | 004.545 | 000.010 | 000.009 |    | 000.024         | 00414.211         |
| HDGV | 000.705                                                                 | 000.005         | 001.074         | 015.763 | 000.025 | 000.022 |    | 000.045         | 00763.488         |
| LDDV | 000.122                                                                 | 000.003         | 000.133         | 002.396 | 000.004 | 000.004 |    | 800.000         | 00309.634         |
| LDDT | 000.266                                                                 | 000.004         | 000.384         | 004.133 | 000.007 | 000.007 |    | 800.000         | 00440.653         |
| HDDV | 000.498                                                                 | 000.013         | 005.110         | 001.743 | 000.169 | 000.156 |    | 000.028         | 01479.227         |
| MC   | 002.339                                                                 | 000.003         | 000.821         | 013.581 | 000.029 | 000.025 |    | 000.054         | 00399.711         |

# B.4.5.2.4 Building Construction Phase Formula(s)

# - Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$ 

CEE<sub>POL</sub>: Construction Exhaust Emissions (TONs)

NE: Number of Equipment

WD: Number of Total Work Days (days)

H: Hours Worked per Day (hours)

EF<sub>POL</sub>: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons





## - Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$ 

VMT<sub>VE</sub>: Vehicle Exhaust Vehicle Miles Travel (miles)

BA: Area of Building (ft²) BH: Height of Building (ft)

(0.42 / 1000): Conversion Factor ft<sup>3</sup> to trips (0.42 trip / 1000 ft<sup>3</sup>) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POL</sub>: Vehicle Emissions (TONs)

VMT<sub>VE</sub>: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF<sub>POL</sub>: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons

## - Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$ 

VMT<sub>WT</sub>: Worker Trips Vehicle Miles Travel (miles)

WD: Number of Total Work Days (days)

WT: Average Worker Round Trip Commute (mile)

1.25: Conversion Factor Number of Construction Equipment to Number of Works

NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POL</sub>: Vehicle Emissions (TONs)

VMT<sub>WT</sub>: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF<sub>POL</sub>: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons

# - Vender Trips Emissions per Phase

 $VMT_{VT} = BA * BH * (0.38 / 1000) * HT$ 

VMT<sub>VT</sub>: Vender Trips Vehicle Miles Travel (miles)

BA: Area of Building (ft²) BH: Height of Building (ft)

(0.38 / 1000): Conversion Factor ft<sup>3</sup> to trips (0.38 trip / 1000 ft<sup>3</sup>) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POI</sub>: Vehicle Emissions (TONs)

 $VMT_{VT}$ : Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds  $EF_{POL}$ : Emission Factor for Pollutant (grams/mile)





VM: Worker Trips On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons

B.4.5.3 Architectural Coatings Phase

B.4.5.3.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date

Start Month: 4 Start Quarter: 1 Start Year: 2028

- Phase Duration

Number of Month: 6 Number of Days: 0

## B.4.5.3.2 Architectural Coatings Phase Assumptions

# - General Architectural Coatings Information

Building Category: Non-Residential

**Total Square Footage (ft²):** 652671 **Number of Units:** N/A

## - Architectural Coatings Default Settings

**Default Settings Used:** Yes

Average Day(s) worked per week: 5 (default)

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

|      | LDGV  | LDGT  | HDGV | LDDV | LDDT | HDDV | MC |
|------|-------|-------|------|------|------|------|----|
| POVs | 50.00 | 50.00 | 0    | 0    | 0    | 0    | 0  |

## B.4.5.3.3 Architectural Coatings Phase Emission Factor(s)

- Worker Trips Emission Factors (grams/mile)

|      | voc     | SO <sub>x</sub> | NO <sub>x</sub> | CO      | PM 10   | PM 2.5  | Pb | NH <sub>3</sub> | CO <sub>2</sub> e |
|------|---------|-----------------|-----------------|---------|---------|---------|----|-----------------|-------------------|
| LDGV | 000.278 | 000.002         | 000.219         | 003.276 | 800.000 | 000.007 |    | 000.023         | 00320.329         |
| LDGT | 000.351 | 000.003         | 000.382         | 004.545 | 000.010 | 000.009 |    | 000.024         | 00414.211         |
| HDGV | 000.705 | 000.005         | 001.074         | 015.763 | 000.025 | 000.022 |    | 000.045         | 00763.488         |
| LDDV | 000.122 | 000.003         | 000.133         | 002.396 | 000.004 | 000.004 |    | 800.000         | 00309.634         |
| LDDT | 000.266 | 000.004         | 000.384         | 004.133 | 000.007 | 000.007 |    | 800.000         | 00440.653         |
| HDDV | 000.498 | 000.013         | 005.110         | 001.743 | 000.169 | 000.156 |    | 000.028         | 01479.227         |
| MC   | 002.339 | 000.003         | 000.821         | 013.581 | 000.029 | 000.025 |    | 000.054         | 00399.711         |

## B.4.5.3.4 Architectural Coatings Phase Formula(s)

## - Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$ 

VMT<sub>WT</sub>: Worker Trips Vehicle Miles Travel (miles)

1: Conversion Factor man days to trips (1 trip / 1 man \* day)

WT: Average Worker Round Trip Commute (mile)





PA: Paint Area (ft²)

800: Conversion Factor square feet to man days (1 ft<sup>2</sup> / 1 man \* day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POL</sub>: Vehicle Emissions (TONs)

 $VMT_{WT}$ : Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds  $EF_{POL}$ : Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons

## - Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$ 

VOC<sub>AC</sub>: Architectural Coating VOC Emissions (TONs)

BA: Area of Building (ft<sup>2</sup>)

2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)

0.0116: Emission Factor (lb/ft²)

2000: Conversion Factor pounds to tons

#### **B.4.6 Construction/Demolition**

B.4.6.1 General Information & Timeline Assumptions

- Activity Location County: Spokane

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: Facility and Airfield Improvements

#### - Activity Description:

Facility and Airfield Improvements:

Flight Simulator Facility / FUT Complex (50,719 square foot addition)

Parking apron and hydrant fuel system expansion (1,612,029 square foot renovation; 398,995 square foot addition)

Engine run-up area (195,553 square foot renovation)

Total renovations = 1,137,582 square feet

Total additions = 449,714 square feet

Total assumed construction area: 50,719 square feet (i.e., Flight Simulator Facility/FUT Complex)

(Assumed 500 square feet needed for trenching plus total facility and airfield renovation/addition square footage for excavation)

- Activity Start Date

Start Month: 10 Start Month: 2025

- Activity End Date

Indefinite: False End Month: 9





End Month: 2028

- Activity Emissions:

| Pollutant       | Total Emissions (TONs) |  |  |  |  |  |  |
|-----------------|------------------------|--|--|--|--|--|--|
| VOC             | 2.253511               |  |  |  |  |  |  |
| SO <sub>x</sub> | 0.025918               |  |  |  |  |  |  |
| NO <sub>x</sub> | 9.098818               |  |  |  |  |  |  |
| CO              | 13.045229              |  |  |  |  |  |  |
| PM 10           | 72.338287              |  |  |  |  |  |  |

| Pollutant         | Total Emissions (TONs) |
|-------------------|------------------------|
| PM 2.5            | 0.401796               |
| Pb                | 0.000000               |
| NH <sub>3</sub>   | 0.008191               |
| CO <sub>2</sub> e | 2522.4                 |
|                   |                        |

B.4.6.2 Trenching/Excavating Phase

B.4.6.2.1 Trenching / Excavating Phase Timeline Assumptions

- Phase Start Date

Start Month: 10 Start Quarter: 1 Start Year: 2025

- Phase Duration

Number of Month: 4 Number of Days: 0

B.4.6.2.2 Trenching / Excavating Phase Assumptions

- General Trenching/Excavating Information

Area of Site to be Trenched/Excavated (ft<sup>2</sup>): 1807796

Amount of Material to be Hauled On-Site (yd³): 0
Amount of Material to be Hauled Off-Site (yd³): 0

- Trenching Default Settings

**Default Settings Used:** Yes

Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

| Equipment Name                               | Number Of<br>Equipment | Hours Per Day |
|----------------------------------------------|------------------------|---------------|
| Excavators Composite                         | 2                      | 8             |
| Other General Industrial Equipment Composite | 1                      | 8             |
| Tractors/Loaders/Backhoes Composite          | 1                      | 8             |

- Vehicle Exhaust

Average Hauling Truck Capacity (yd³): 20 (default)
Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

|      | LDGV | LDGT | HDGV | LDDV | LDDT | HDDV   | MC |
|------|------|------|------|------|------|--------|----|
| POVs | 0    | 0    | 0    | 0    | 0    | 100.00 | 0  |

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

| <br> |      | ,    |      |      |      |    |
|------|------|------|------|------|------|----|
| LDGV | LDGT | HDGV | LDDV | LDDT | HDDV | MC |





| POVs | 50.00 | 50.00 | 0 | 0 | 0 | 0 | 0 |
|------|-------|-------|---|---|---|---|---|

#### B.4.6.2.3 Trenching / Excavating Phase Emission Factor(s)

# - Construction Exhaust Emission Factors (lb/hour) (default)

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

|      | VOC     | SO <sub>x</sub> | NOx     | СО      | PM 10   | PM 2.5  | Pb | <b>NH</b> <sub>3</sub> | CO <sub>2</sub> e |
|------|---------|-----------------|---------|---------|---------|---------|----|------------------------|-------------------|
| LDGV | 000.541 | 000.007         | 000.605 | 004.970 | 000.014 | 000.013 |    | 000.034                | 00366.775         |
| LDGT | 000.730 | 000.010         | 001.051 | 007.932 | 000.016 | 000.014 |    | 000.034                | 00491.466         |
| HDGV | 001.333 | 000.015         | 003.076 | 026.359 | 000.041 | 000.036 |    | 000.045                | 00764.988         |
| LDDV | 000.257 | 000.003         | 000.316 | 003.374 | 000.007 | 000.006 |    | 800.000                | 00372.571         |
| LDDT | 000.574 | 000.005         | 000.856 | 006.977 | 000.009 | 800.000 |    | 800.000                | 00581.646         |
| HDDV | 000.839 | 000.014         | 009.019 | 002.812 | 000.375 | 000.345 |    | 000.029                | 01554.798         |
| MC   | 002.423 | 800.000         | 000.845 | 015.088 | 000.029 | 000.026 |    | 000.050                | 00398.949         |

## B.4.6.2.4 Trenching / Excavating Phase Formula(s)

# - Fugitive Dust Emissions per Phase

 $PM10_{FD} = (20 * ACRE * WD) / 2000$ 

PM10<sub>FD</sub>: Fugitive Dust PM 10 Emissions (TONs)

20: Conversion Factor Acre Day to pounds (20 lb / 1 Acre Day)

ACRE: Total acres (acres)

WD: Number of Total Work Days (days) 2000: Conversion Factor pounds to tons

## - Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$ 

CEE<sub>POL</sub>: Construction Exhaust Emissions (TONs)

NE: Number of Equipment

WD: Number of Total Work Days (days)

H: Hours Worked per Day (hours)

EF<sub>POL</sub>: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

#### - Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = (HA_{OnSite} + HA_{OffSite}) * (1 / HC) * HT$ 

VMT<sub>VE</sub>: Vehicle Exhaust Vehicle Miles Travel (miles) HA<sub>OnSite</sub>: Amount of Material to be Hauled On-Site (yd³) HA<sub>OffSite</sub>: Amount of Material to be Hauled Off-Site (yd³)

HC: Average Hauling Truck Capacity (yd³)

(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POL</sub>: Vehicle Emissions (TONs)

VMT<sub>VE</sub>: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF<sub>POL</sub>: Emission Factor for Pollutant (grams/mile)





VM: Vehicle Exhaust On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons

## - Worker Trips Emissions per Phase

VMT<sub>WT</sub> = WD \* WT \* 1.25 \* NE

VMT<sub>WT</sub>: Worker Trips Vehicle Miles Travel (miles)

WD: Number of Total Work Days (days)

WT: Average Worker Round Trip Commute (mile)

1.25: Conversion Factor Number of Construction Equipment to Number of Works

**NE: Number of Construction Equipment** 

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POL</sub>: Vehicle Emissions (TONs)

VMT<sub>VE</sub>: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF<sub>POL</sub>: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons

B.4.6.3 Building Construction Phase

B.4.6.3.1 Building Construction Phase Timeline Assumptions

- Phase Start Date

Start Month: 10 Start Quarter: 1 Start Year: 2025

- Phase Duration

Number of Month: 36 Number of Days: 0

## B.4.6.3.2 Building Construction Phase Assumptions

## - General Building Construction Information

**Building Category:** Office or Industrial

Area of Building (ft²): 50719 Height of Building (ft): 35 Number of Units: N/A

## - Building Construction Default Settings

Default Settings Used: Yes
Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)

| Equipment Name                      | Number Of<br>Equipment | Hours Per Day |
|-------------------------------------|------------------------|---------------|
| Cranes Composite                    | 1                      | 6             |
| Forklifts Composite                 | 2                      | 6             |
| Generator Sets Composite            | 1                      | 8             |
| Tractors/Loaders/Backhoes Composite | 1                      | 8             |
| Welders Composite                   | 3                      | 8             |





#### - Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

- Vehicle Exhaust Vehicle Mixture (%)

|      | LDGV | LDGT | HDGV | LDDV | LDDT | HDDV   | MC |
|------|------|------|------|------|------|--------|----|
| POVs | 0    | 0    | 0    | 0    | 0    | 100.00 | 0  |

## - Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

|      | LDGV  | LDGT  | HDGV | LDDV | LDDT | HDDV | MC |
|------|-------|-------|------|------|------|------|----|
| POVs | 50.00 | 50.00 | 0    | 0    | 0    | 0    | 0  |

## - Vendor Trips

Average Vendor Round Trip Commute (mile): 40 (default)

- Vendor Trips Vehicle Mixture (%)

|      | LDGV | LDGT | HDGV | LDDV | LDDT | HDDV   | MC |
|------|------|------|------|------|------|--------|----|
| POVs | 0    | 0    | 0    | 0    | 0    | 100.00 | 0  |

## B.4.6.3.3 Building Construction Phase Emission Factor(s)

- Construction Exhaust Emission Factors (lb/hour) (default)

| <b>Cranes Composite</b>  | 9                   |                 | ,               |        |        |        |        |                   |  |  |
|--------------------------|---------------------|-----------------|-----------------|--------|--------|--------|--------|-------------------|--|--|
|                          | VOC                 | SOx             | NOx             | CO     | PM 10  | PM 2.5 | CH₄    | CO <sub>2</sub> e |  |  |
| <b>Emission Factors</b>  | 0.0680              | 0.0013          | 0.4222          | 0.3737 | 0.0143 | 0.0143 | 0.0061 | 128.77            |  |  |
| <b>Forklifts Composi</b> | Forklifts Composite |                 |                 |        |        |        |        |                   |  |  |
|                          | VOC                 | SO <sub>x</sub> | NO <sub>x</sub> | CO     | PM 10  | PM 2.5 | CH₄    | CO <sub>2</sub> e |  |  |
| <b>Emission Factors</b>  | 0.0236              | 0.0006          | 0.0859          | 0.2147 | 0.0025 | 0.0025 | 0.0021 | 54.449            |  |  |
| <b>Generator Sets Co</b> | omposite            |                 |                 |        |        |        |        |                   |  |  |
|                          | VOC                 | SOx             | NOx             | CO     | PM 10  | PM 2.5 | CH₄    | CO <sub>2</sub> e |  |  |
| Emission Factors         | 0.0287              | 0.0006          | 0.2329          | 0.2666 | 0.0080 | 0.0080 | 0.0025 | 61.057            |  |  |
| Tractors/Loaders/        | <b>Backhoes</b>     | Composit        | te              |        |        |        |        |                   |  |  |
|                          | VOC                 | SO <sub>x</sub> | NO <sub>x</sub> | CO     | PM 10  | PM 2.5 | CH₄    | CO <sub>2</sub> e |  |  |
| Emission Factors         | 0.0335              | 0.0007          | 0.1857          | 0.3586 | 0.0058 | 0.0058 | 0.0030 | 66.872            |  |  |
| <b>Welders Composi</b>   | te                  |                 |                 |        |        |        |        |                   |  |  |
| _                        | VOC                 | SOx             | NOx             | CO     | PM 10  | PM 2.5 | CH₄    | CO <sub>2</sub> e |  |  |
| Emission Factors         | 0.0214              | 0.0003          | 0.1373          | 0.1745 | 0.0051 | 0.0051 | 0.0019 | 25.650            |  |  |

- Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

|      | Tomoro Extractor of Frontier in the Embedding (gramorina) |                 |         |         |         |         |    |                 |                   |
|------|-----------------------------------------------------------|-----------------|---------|---------|---------|---------|----|-----------------|-------------------|
|      | VOC                                                       | SO <sub>x</sub> | NOx     | CO      | PM 10   | PM 2.5  | Pb | NH <sub>3</sub> | CO <sub>2</sub> e |
| LDGV | 000.278                                                   | 000.002         | 000.219 | 003.276 | 800.000 | 000.007 |    | 000.023         | 00320.329         |
| LDGT | 000.351                                                   | 000.003         | 000.382 | 004.545 | 000.010 | 000.009 |    | 000.024         | 00414.211         |
| HDGV | 000.705                                                   | 000.005         | 001.074 | 015.763 | 000.025 | 000.022 |    | 000.045         | 00763.488         |
| LDDV | 000.122                                                   | 000.003         | 000.133 | 002.396 | 000.004 | 000.004 |    | 800.000         | 00309.634         |
| LDDT | 000.266                                                   | 000.004         | 000.384 | 004.133 | 000.007 | 000.007 |    | 800.000         | 00440.653         |
| HDDV | 000.498                                                   | 000.013         | 005.110 | 001.743 | 000.169 | 000.156 |    | 000.028         | 01479.227         |
| MC   | 002.339                                                   | 000.003         | 000.821 | 013.581 | 000.029 | 000.025 |    | 000.054         | 00399.711         |

## B.4.6.3.4 Building Construction Phase Formula(s)

- Construction Exhaust Emissions per Phase





 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$ 

CEE<sub>POL</sub>: Construction Exhaust Emissions (TONs)

NE: Number of Equipment

WD: Number of Total Work Days (days)

H: Hours Worked per Day (hours)

EF<sub>POL</sub>: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

## - Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = BA * BH * (0.42 / 1000) * HT$ 

VMT<sub>VE</sub>: Vehicle Exhaust Vehicle Miles Travel (miles)

BA: Area of Building (ft²) BH: Height of Building (ft)

(0.42 / 1000): Conversion Factor ft<sup>3</sup> to trips (0.42 trip / 1000 ft<sup>3</sup>) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POL</sub>: Vehicle Emissions (TONs)

VMT<sub>VE</sub>: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF<sub>POL</sub>: Emission Factor for Pollutant (grams/mile)

VM: Worker Trips On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons

## - Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$ 

VMT<sub>WT</sub>: Worker Trips Vehicle Miles Travel (miles)

WD: Number of Total Work Days (days)

WT: Average Worker Round Trip Commute (mile)

1.25: Conversion Factor Number of Construction Equipment to Number of Works

**NE:** Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POL</sub>: Vehicle Emissions (TONs)

VMT<sub>WT</sub>: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF<sub>POL</sub>: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons

#### - Vender Trips Emissions per Phase

 $VMT_{VT} = BA * BH * (0.38 / 1000) * HT$ 

VMT<sub>VT</sub>: Vender Trips Vehicle Miles Travel (miles)

BA: Area of Building (ft²) BH: Height of Building (ft)

(0.38 / 1000): Conversion Factor ft<sup>3</sup> to trips (0.38 trip / 1000 ft<sup>3</sup>)





HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VT} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POL</sub>: Vehicle Emissions (TONs)

 $VMT_{VT}$ : Vender Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds  $EF_{POL}$ : Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons

B.4.6.4 Architectural Coatings Phase

B.4.6.4.1 Architectural Coatings Phase Timeline Assumptions

- Phase Start Date

Start Month: 9 Start Quarter: 1 Start Year: 2028

- Phase Duration

Number of Month: 1 Number of Days: 0

## B.4.6.4.2 Architectural Coatings Phase Assumptions

- General Architectural Coatings Information

Building Category: Non-Residential

**Total Square Footage (ft²):** 50719 **Number of Units:** N/A

- Architectural Coatings Default Settings

**Default Settings Used:** Yes

Average Day(s) worked per week: 5 (default)

- Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

- Worker Trips Vehicle Mixture (%)

|      | LDGV  | LDGT  | HDGV | LDDV | LDDT | HDDV | MC |
|------|-------|-------|------|------|------|------|----|
| POVs | 50.00 | 50.00 | 0    | 0    | 0    | 0    | 0  |

## B.4.6.4.3 Architectural Coatings Phase Emission Factor(s)

- Worker Trips Emission Factors (grams/mile)

|      | voc     | SO <sub>x</sub> | NOx     | CO      | PM 10   | PM 2.5  | Pb | NH <sub>3</sub> | CO <sub>2</sub> e |
|------|---------|-----------------|---------|---------|---------|---------|----|-----------------|-------------------|
| LDGV | 000.278 | 000.002         | 000.219 | 003.276 | 800.000 | 000.007 |    | 000.023         | 00320.329         |
| LDGT | 000.351 | 000.003         | 000.382 | 004.545 | 000.010 | 000.009 |    | 000.024         | 00414.211         |
| HDGV | 000.705 | 000.005         | 001.074 | 015.763 | 000.025 | 000.022 |    | 000.045         | 00763.488         |
| LDDV | 000.122 | 000.003         | 000.133 | 002.396 | 000.004 | 000.004 |    | 800.000         | 00309.634         |
| LDDT | 000.266 | 000.004         | 000.384 | 004.133 | 000.007 | 000.007 |    | 800.000         | 00440.653         |
| HDDV | 000.498 | 000.013         | 005.110 | 001.743 | 000.169 | 000.156 |    | 000.028         | 01479.227         |
| MC   | 002.339 | 000.003         | 000.821 | 013.581 | 000.029 | 000.025 |    | 000.054         | 00399.711         |





## 6.3.4 Architectural Coatings Phase Formula(s)

#### - Worker Trips Emissions per Phase

 $VMT_{WT} = (1 * WT * PA) / 800$ 

VMT<sub>WT</sub>: Worker Trips Vehicle Miles Travel (miles)

1: Conversion Factor man days to trips (1 trip / 1 man \* day)

WT: Average Worker Round Trip Commute (mile)

PA: Paint Area (ft²)

800: Conversion Factor square feet to man days (1 ft<sup>2</sup> / 1 man \* day)

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POL</sub>: Vehicle Emissions (TONs)

VMT<sub>WT</sub>: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF<sub>POL</sub>: Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons

## - Off-Gassing Emissions per Phase

 $VOC_{AC} = (AB * 2.0 * 0.0116) / 2000.0$ 

VOC<sub>AC</sub>: Architectural Coating VOC Emissions (TONs)

BA: Area of Building (ft<sup>2</sup>)

2.0: Conversion Factor total area to coated area (2.0 ft² coated area / total area)

0.0116: Emission Factor (lb/ft²)

2000: Conversion Factor pounds to tons

B.4.6.5 Paving Phase

B.4.6.5.1 Paving Phase Timeline Assumptions

- Phase Start Date

Start Month: 10 Start Quarter: 1 Start Year: 2025

- Phase Duration

Number of Month: 36 Number of Days: 0

## B.4.6.5.2 Paving Phase Assumptions

- General Paving Information

**Paving Area (ft<sup>2</sup>):** 1756577

- Paving Default Settings

**Default Settings Used:** Yes

Average Day(s) worked per week: 5 (default)

- Construction Exhaust (default)





| Equipment Name             | Number Of<br>Equipment | Hours Per Day |
|----------------------------|------------------------|---------------|
| Pavers Composite           | 1                      | 8             |
| Paving Equipment Composite | 2                      | 8             |
| Rollers Composite          | 2                      | 6             |

#### - Vehicle Exhaust

Average Hauling Truck Round Trip Commute (mile): 20 (default)

## - Vehicle Exhaust Vehicle Mixture (%)

|      | LDGV | LDGT | HDGV | LDDV | LDDT | HDDV   | MC |
|------|------|------|------|------|------|--------|----|
| POVs | 0    | 0    | 0    | 0    | 0    | 100.00 | 0  |

# - Worker Trips

Average Worker Round Trip Commute (mile): 20 (default)

## - Worker Trips Vehicle Mixture (%)

|      | LDGV  | LDGT ` | HDGV | LDDV | LDDT | HDDV | MC |
|------|-------|--------|------|------|------|------|----|
| POVs | 50.00 | 50.00  | 0    | 0    | 0    | 0    | 0  |

## B.4.6.5.3 Paving Phase Emission Factor(s)

## - Construction Exhaust Emission Factors (lb/hour) (default)

## - Vehicle Exhaust & Worker Trips Emission Factors (grams/mile)

|      | VOC     | SO <sub>x</sub> | NOx     | CO      | PM 10   | PM 2.5  | Pb | NH <sub>3</sub> | CO <sub>2</sub> e |
|------|---------|-----------------|---------|---------|---------|---------|----|-----------------|-------------------|
| LDGV | 000.541 | 000.007         | 000.605 | 004.970 | 000.014 | 000.013 |    | 000.034         | 00366.775         |
| LDGT | 000.730 | 000.010         | 001.051 | 007.932 | 000.016 | 000.014 |    | 000.034         | 00491.466         |
| HDGV | 001.333 | 000.015         | 003.076 | 026.359 | 000.041 | 000.036 |    | 000.045         | 00764.988         |
| LDDV | 000.257 | 000.003         | 000.316 | 003.374 | 000.007 | 000.006 |    | 800.000         | 00372.571         |
| LDDT | 000.574 | 000.005         | 000.856 | 006.977 | 000.009 | 800.000 |    | 800.000         | 00581.646         |
| HDDV | 000.839 | 000.014         | 009.019 | 002.812 | 000.375 | 000.345 |    | 000.029         | 01554.798         |
| MC   | 002.423 | 800.000         | 000.845 | 015.088 | 000.029 | 000.026 |    | 000.050         | 00398.949         |

## B.4.6.5.4 Paving Phase Formula(s)

## - Construction Exhaust Emissions per Phase

 $CEE_{POL} = (NE * WD * H * EF_{POL}) / 2000$ 

CEE<sub>POL</sub>: Construction Exhaust Emissions (TONs)

NE: Number of Equipment

WD: Number of Total Work Days (days)

H: Hours Worked per Day (hours)

EF<sub>POL</sub>: Emission Factor for Pollutant (lb/hour) 2000: Conversion Factor pounds to tons

# - Vehicle Exhaust Emissions per Phase

 $VMT_{VE} = PA * 0.25 * (1 / 27) * (1 / HC) * HT$ 

VMT<sub>VE</sub>: Vehicle Exhaust Vehicle Miles Travel (miles)

PA: Paving Area (ft<sup>2</sup>)

0.25: Thickness of Paving Area (ft)

(1 / 27): Conversion Factor cubic feet to cubic yards (1 yd3 / 27 ft3)





HC: Average Hauling Truck Capacity (yd³)

(1 / HC): Conversion Factor cubic yards to trips (1 trip / HC yd³) HT: Average Hauling Truck Round Trip Commute (mile/trip)

 $V_{POL} = (VMT_{VE} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POL</sub>: Vehicle Emissions (TONs)

VMT<sub>VE</sub>: Vehicle Exhaust Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF<sub>POL</sub>: Emission Factor for Pollutant (grams/mile) VM: Vehicle Exhaust On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons

## - Worker Trips Emissions per Phase

 $VMT_{WT} = WD * WT * 1.25 * NE$ 

VMT<sub>WT</sub>: Worker Trips Vehicle Miles Travel (miles)

WD: Number of Total Work Days (days)

WT: Average Worker Round Trip Commute (mile)

1.25: Conversion Factor Number of Construction Equipment to Number of Works

NE: Number of Construction Equipment

 $V_{POL} = (VMT_{WT} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POL</sub>: Vehicle Emissions (TONs)

VMT<sub>VE</sub>: Worker Trips Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds  $EF_{POL}$ : Emission Factor for Pollutant (grams/mile) VM: Worker Trips On Road Vehicle Mixture (%)

2000: Conversion Factor pounds to tons

## - Off-Gassing Emissions per Phase

 $VOC_P = (2.62 * PA) / 43560$ 

VOC<sub>P</sub>: Paving VOC Emissions (TONs)

2.62: Emission Factor (lb/acre)

PA: Paving Area (ft<sup>2</sup>)

43560: Conversion Factor square feet to acre (43560 ft2 / acre)<sup>2</sup> / acre)

## **B.4.7 Personnel**

# B.4.7.1.1 General Information & Timeline Assumptions

## - Add or Remove Activity from Baseline? Add

- Activity Location

County: Spokane

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: Addition of Personnel

- Activity Description:





Net change of additional 334 military personnel, additional 4 government civilian and contractor personnel, and additional 500 military dependents and family members. Conservatively assumed all military dependents and family members commute.

- Activity Start Date Start Month: 10 Start Year: 2028

- Activity End Date Indefinite: Yes End Month: N/A End Year: N/A

## - Activity Emissions:

| Pollutant       | Emissions Per Year<br>(TONs) |
|-----------------|------------------------------|
| VOC             | 0.699765                     |
| SO <sub>x</sub> | 0.005090                     |
| NO <sub>x</sub> | 0.637645                     |
| CO              | 8.213569                     |
| PM 10           | 0.018607                     |

| Pollutant         | Emissions Per Year<br>(TONs) |
|-------------------|------------------------------|
| PM 2.5            | 0.016563                     |
| Pb                | 0.000000                     |
| NH <sub>3</sub>   | 0.046812                     |
| CO <sub>2</sub> e | 733.8                        |
|                   |                              |

## B.4.7.2 Personnel Assumptions

- Number of Personnel

Active Duty Personnel: 334
Civilian Personnel: 4
Support Contractor Personnel: 0
Air National Guard (ANG) Personnel: 0
Reserve Personnel: 0

- Default Settings Used: Yes

- Average Personnel Round Trip Commute (mile): 20 (default)

- Personnel Work Schedule

Active Duty Personnel: 5 Days Per Week (default)
Civilian Personnel: 5 Days Per Week (default)
Support Contractor Personnel: 5 Days Per Week (default)
Air National Guard (ANG) Personnel: 4 Days Per Week (default)
Reserve Personnel: 4 Days Per Month (default)

# B.4.7.3 Personnel On Road Vehicle Mixture

- On Road Vehicle Mixture (%)

|      | LDGV  | LDGT  | HDGV | LDDV | LDDT | HDDV | MC  |
|------|-------|-------|------|------|------|------|-----|
| POVs | 37.55 | 60.32 | 0    | 0.03 | 0.2  | 0    | 1.9 |
| GOVs | 54.49 | 37.73 | 4.67 | 0    | 0    | 3.11 | 0   |

## B.4.7.4 Personnel Emission Factor(s)

- On Road Vehicle Emission Factors (grams/mile)

| • |     |                 |                 | - (9 |       |        |    |                 |                   |
|---|-----|-----------------|-----------------|------|-------|--------|----|-----------------|-------------------|
|   | VOC | SO <sub>x</sub> | NO <sub>x</sub> | CO   | PM 10 | PM 2.5 | Pb | NH <sub>3</sub> | CO <sub>2</sub> e |





| LDGV | 000.278 | 000.002 | 000.219 | 003.276 | 800.000 | 000.007 | 000.023 | 00320.329 |
|------|---------|---------|---------|---------|---------|---------|---------|-----------|
| LDGT | 000.351 | 000.003 | 000.382 | 004.545 | 000.010 | 000.009 | 000.024 | 00414.211 |
| HDGV | 000.705 | 000.005 | 001.074 | 015.763 | 000.025 | 000.022 | 000.045 | 00763.488 |
| LDDV | 000.122 | 000.003 | 000.133 | 002.396 | 000.004 | 000.004 | 800.000 | 00309.634 |
| LDDT | 000.266 | 000.004 | 000.384 | 004.133 | 000.007 | 000.007 | 800.000 | 00440.653 |
| HDDV | 000.498 | 000.013 | 005.110 | 001.743 | 000.169 | 000.156 | 000.028 | 01479.227 |
| MC   | 002.339 | 000.003 | 000.821 | 013.581 | 000.029 | 000.025 | 000.054 | 00399.711 |

## B.4.7.5 Personnel Formula(s)

## - Personnel Vehicle Miles Travel for Work Days per Year

 $VMT_P = NP * WD * AC$ 

VMT<sub>P</sub>: Personnel Vehicle Miles Travel (miles/year)

NP: Number of Personnel WD: Work Days per Year AC: Average Commute (miles)

## - Total Vehicle Miles Travel per Year

VMT<sub>Total</sub> = VMT<sub>AD</sub> + VMT<sub>C</sub> + VMT<sub>SC</sub> + VMT<sub>ANG</sub> + VMT<sub>AFRC</sub>

VMT<sub>Total</sub>: Total Vehicle Miles Travel (miles)

VMT<sub>AD</sub>: Active Duty Personnel Vehicle Miles Travel (miles)

VMT<sub>c</sub>: Civilian Personnel Vehicle Miles Travel (miles)

VMT<sub>SC</sub>: Support Contractor Personnel Vehicle Miles Travel (miles) VMT<sub>ANG</sub>: Air National Guard Personnel Vehicle Miles Travel (miles)

VMT<sub>AFRC</sub>: Reserve Personnel Vehicle Miles Travel (miles)

## - Vehicle Emissions per Year

 $V_{POL} = (VMT_{Total} * 0.002205 * EF_{POL} * VM) / 2000$ 

V<sub>POL</sub>: Vehicle Emissions (TONs)

VMT<sub>Total</sub>: Total Vehicle Miles Travel (miles) 0.002205: Conversion Factor grams to pounds EF<sub>POL</sub>: Emission Factor for Pollutant (grams/mile) VM: Personnel On Road Vehicle Mixture (%) 2000: Conversion Factor pounds to tons

# **B.4.8** Heating

# B.4.8.1 General Information & Timeline Assumptions

## - Add or Remove Activity from Baseline? Add

#### - Activity Location

County: Spokane

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: Heating of New Facilities

## - Activity Description:

Heating of new facilities:

2-Bay Fuel Cell and Wash Rack Hangar with Back Shops (178,013 square feet)





Mission Planning Center (4,238 square feet) Installation Deployment Readiness Center (21,435 square feet) Squadron Operations Facility (29,745 square feet) Supply Warehouse (81,616 square feet)

Heating for facility additions:

Flight Simulator Facility/FUT Complex (50,719 square feet)

Assumed heating occurs over a 6 month period for 4380 hours per year

- Activity Start Date

Start Month: 10 Start Year: 2028

- Activity End Date

Indefinite: Yes End Month: N/A End Year: N/A

- Activity Emissions:

| Pollutant       | Emissions Per Year<br>(TONs) |
|-----------------|------------------------------|
| VOC             | 0.074817                     |
| SO <sub>x</sub> | 0.008162                     |
| NOx             | 1.360301                     |
| CO              | 1.142653                     |
| PM 10           | 0.103383                     |

| Pollutant         | Emissions Per Year<br>(TONs) |
|-------------------|------------------------------|
| PM 2.5            | 0.103383                     |
| Pb                | 0.000000                     |
| NH <sub>3</sub>   | 0.000000                     |
| CO <sub>2</sub> e | 1637.7                       |
|                   |                              |

## B.4.8.2 Heating Assumptions

- Heating

**Heating Calculation Type:** Heat Energy Requirement Method

- Heat Energy Requirement Method

Area of floorspace to be heated (ft²): 365766

Type of fuel: Natural Gas

**Type of boiler/furnace:** Commercial/Institutional (0.3 - 9.9 MMBtu/hr)

Heat Value (MMBtu/ft³): 0.00105 Energy Intensity (MMBtu/ft²): 0.0781

- Default Settings Used: No

- Boiler/Furnace Usage

Operating Time Per Year (hours): 4380

B.4.8.3 Heating Emission Factor(s)

- Heating Emission Factors (lb/1000000 scf)

| VOC | SOx | NOx | СО | PM 10 | PM 2.5 | Pb | NH₃ | CO <sub>2</sub> e |
|-----|-----|-----|----|-------|--------|----|-----|-------------------|
| 5.5 | 0.6 | 100 | 84 | 7.6   | 7.6    |    |     | 120390            |





#### B.4.8.4 Heating Formula(s)

## - Heating Fuel Consumption ft<sup>3</sup> per Year

FC<sub>HER</sub>= HA \* EI / HV / 1000000

FC<sub>HER</sub>: Fuel Consumption for Heat Energy Requirement Method

HA: Area of floorspace to be heated (ft²) EI: Energy Intensity Requirement (MMBtu/ft²)

HV: Heat Value (MMBTU/ft³) 1000000: Conversion Factor

# - Heating Emissions per Year

HE<sub>POL</sub>= FC \* EF<sub>POL</sub> / 2000

HE<sub>POL</sub>: Heating Emission Emissions (TONs)

FC: Fuel Consumption

EF<sub>POL</sub>: Emission Factor for Pollutant 2000: Conversion Factor pounds to tons

#### **B.4.9** Paint Booth

## B.4.9.1 General Information & Timeline Assumptions

## - Add or Remove Activity from Baseline? Add

## - Activity Location

County: Spokane

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: KC-46A Maintenance Hangar Paint Booth

## - Activity Description:

KC-46A Maintenance Hangar Paint Booth. Assumed paint booth is relatively small and its operation and emissions will be similar to the reduction in maintenance painting conducted for the KC-135 aircraft that will be removed from the installation. Therefore, it is assumed no emissions increase due to painting.

#### - Activity Start Date

Start Month: 10 Start Year: 2028

#### - Activity End Date

Indefinite: Yes End Month: N/A End Year: N/A

- Activity Emissions:

| Pollutant       | Emissions Per Year |  |  |  |
|-----------------|--------------------|--|--|--|
|                 | (TONs)             |  |  |  |
| VOC             | 0.000000           |  |  |  |
| SO <sub>x</sub> | 0.00000            |  |  |  |
| NO <sub>x</sub> | 0.000000           |  |  |  |
| CO              | 0.000000           |  |  |  |

| Pollutant         | Emissions Per Year<br>(TONs) |
|-------------------|------------------------------|
| PM 2.5            | 0.000000                     |
| Pb                | 0.000000                     |
| NH <sub>3</sub>   | 0.000000                     |
| CO <sub>2</sub> e | 0.0                          |





PM 10 0.000000

B.4.9.2 Paint Booth Assumptions

- Paint Booth

Coating throughput (gallons/year): 0

- Default Settings Used: Yes

- Paint Booth Consumption

Coating used: Quick Dry Enamel (default)

Specific gravity of coating: 1.19 (default)
Coating VOC content by weight (%): 32 (default)
Efficiency of control device (%): 0 (default)

B.4.9.3 Paint Booth Formula(s)

- Paint Booth Emissions per Year

PBE<sub>VOC</sub>= (VOC / 100) \* CT \* SG \* 8.35 \* (1 - (CD / 100)) / 2000

PBE<sub>VOC</sub>: Paint Booth VOC Emissions (TONs per Year)

VOC: Coating VOC content by weight (%)

(VOC / 100): Conversion Factor percent to decimal

CT: Coating throughput (gallons/year)

SG: Specific gravity of coating

8.35: Conversion Factor the density of water

CD: Efficiency of control device (%)

(1 - (CD / 100)): Conversion Factor percent to decimal (Not effected by control device)

2000: Conversion Factor pounds to tons

**B.4.10 Aircraft** 

B.4.10.1 General Information & Timeline Assumptions

- Add or Remove Activity from Baseline? Add

- Activity Location

County: Spokane

Regulatory Area(s): NOT IN A REGULATORY AREA

- Activity Title: Beddown 24 KC-46A Aircraft at Fairchild AFB, Washington - TGOs

- Activity Description:

Beddown 24 KC-46A Aircraft at Fairchild AFB - TGOs only

- Activity Start Date

Start Month: 10 Start Year: 2028

- Activity End Date

Indefinite: Yes End Month: N/A





End Year: N/A

- Activity Emissions:

| Addivity Elimodiono. |                           |  |  |  |
|----------------------|---------------------------|--|--|--|
| Pollutant            | Emissions Per Year (TONs) |  |  |  |
| VOC                  | 0.553461                  |  |  |  |
| SO <sub>x</sub>      | 6.346934                  |  |  |  |
| NO <sub>x</sub>      | 110.278778                |  |  |  |
| CO                   | 7.504077                  |  |  |  |
| PM 10                | 0.351748                  |  |  |  |

| Pollutant         | Emissions Per Year<br>(TONs) |
|-------------------|------------------------------|
| PM 2.5            | 0.292431                     |
| Pb                | 0.000000                     |
| NH <sub>3</sub>   | 0.000000                     |
| CO <sub>2</sub> e | 19183.2                      |
|                   |                              |

- Activity Emissions [Flight Operations (includes Trim Test & APU) part]:

| Pollutant       | Emissions Per Year |
|-----------------|--------------------|
|                 | (TONs)             |
| VOC             | 0.553461           |
| SO <sub>x</sub> | 6.346934           |
| NO <sub>x</sub> | 110.278778         |
| CO              | 7.504077           |
| PM 10           | 0.351748           |

| Pollutant         | Emissions Per Year<br>(TONs) |
|-------------------|------------------------------|
| PM 2.5            | 0.292431                     |
| Pb                | 0.00000                      |
| NH <sub>3</sub>   | 0.00000                      |
| CO <sub>2</sub> e | 19183.2                      |
|                   |                              |

B.4.10.2 Aircraft & Engines

B.4.10.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

**Aircraft Designation**: KC-46A **Engine Model**: PW4062

**Primary Function:** Transport - Bomber

**Aircraft has After burn:** No **Number of Engines:** 2

- Aircraft & Engine Surrogate

Is Aircraft & Engine a Surrogate? No

Original Aircraft Name: Original Engine Name:

## B.4.10.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

|              | Fuel<br>Flow | VOC   | SO <sub>x</sub> | NOx   | СО    | PM 10 | PM 2.5 | CO <sub>2</sub> e |
|--------------|--------------|-------|-----------------|-------|-------|-------|--------|-------------------|
| ldle         | 1666.68      | 12.49 | 1.07            | 3.78  | 42.61 | 0.11  | 0.10   | 3234              |
| Approach     | 5698.45      | 0.10  | 1.07            | 12.17 | 1.93  | 0.05  | 0.04   | 3234              |
| Intermediate | 16865.19     | 0.08  | 1.07            | 25.98 | 0.50  | 0.07  | 0.06   | 3234              |
| Military     | 21627.13     | 0.09  | 1.07            | 34.36 | 0.61  | 0.08  | 0.07   | 3234              |
| After Burn   | 0.00         | 0.00  | 0.00            | 0.00  | 0.00  | 0.00  | 0.00   | 3234              |

B.4.10.3 Flight Operations

## B.4.10.3.1 Flight Operations Assumptions

- Flight Operations

Number of Aircraft: 24
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 0
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 5304
Number of Annual Trim Test(s) per Aircraft: 0





- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)

Taxi/Idle Out [Idle] (mins): 0
Takeoff [Military] (mins): 0
Takeoff [After Burn] (mins): 0
Climb Out [Intermediate] (mins): 1.85
Approach [Approach] (mins): 6.3
Taxi/Idle In [Idle] (mins): 0

Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test

Idle (mins): 12
Approach (mins): 27
Intermediate (mins): 9
Military (mins): 12
AfterBurn (mins): 0

## B.4.10.3.2 Flight Operations Formula(s)

## - Aircraft Emissions per Mode for LTOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * LTO / 2000$ 

AEM<sub>POI</sub>: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

LTO: Number of Landing and Take-off Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

#### - Aircraft Emissions for LTOs per Year

AELTO = AEMIDLE IN + AEMIDLE OUT + AEMAPPROACH + AEMCLIMBOUT + AEMTAKEOFF

AE<sub>LTO</sub>: Aircraft Emissions (TONs)

AEM<sub>IDLE\_IN</sub>: Aircraft Emissions for Idle-In Mode (TONs) AEM<sub>IDLE\_OUT</sub>: Aircraft Emissions for Idle-Out Mode (TONs) AEM<sub>APPROACH</sub>: Aircraft Emissions for Approach Mode (TONs) AEM<sub>CLIMBOUT</sub>: Aircraft Emissions for Climb-Out Mode (TONs) AEM<sub>TAKEOFF</sub>: Aircraft Emissions for Take-Off Mode (TONs)

#### - Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$ 

AEM<sub>POI</sub>: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)





60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

TGO: Number of Touch-and-Go Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

## - Aircraft Emissions for TGOs per Year

AETGO = AEMAPPROACH + AEMCLIMBOUT + AEMTAKEOFF

AE<sub>TGO</sub>: Aircraft Emissions (TONs)

AEM<sub>APPROACH</sub>: Aircraft Emissions for Approach Mode (TONs) AEM<sub>CLIMBOUT</sub>: Aircraft Emissions for Climb-Out Mode (TONs) AEM<sub>TAKEOFF</sub>: Aircraft Emissions for Take-Off Mode (TONs)

#### - Aircraft Emissions per Mode for Trim per Year

 $AEPS_{POL} = (TD / 60) * (FC / 1000) * EF * NE * NA * NTT / 2000$ 

AEPS<sub>POL</sub>: Aircraft Emissions per Pollutant & Power Setting (TONs)

TD: Test Duration (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines NA: Number of Aircraft NTT: Number of Trim Test

2000: Conversion Factor pounds to TONs

## - Aircraft Emissions for Trim per Year

AETRIM = AEPSIDLE + AEPSAPPROACH + AEPSINTERMEDIATE + AEPSMILITARY + AEPSAFTERBURN

AE<sub>TRIM</sub>: Aircraft Emissions (TONs)

AEPS<sub>IDLE</sub>: Aircraft Emissions for Idle Power Setting (TONs)

AEPS<sub>APPROACH</sub>: Aircraft Emissions for Approach Power Setting (TONs) AEPS<sub>INTERMEDIATE</sub>: Aircraft Emissions for Intermediate Power Setting (TONs)

AEPS<sub>MILITARY</sub>: Aircraft Emissions for Military Power Setting (TONs)

AEPS<sub>AFTERBURN</sub>: Aircraft Emissions for After Burner Power Setting (TONs)

B.4.10.4 Auxiliary Power Unit (APU)

B.4.10.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

| ruxinary i orior orine (rii o) (aoraan) |                                    |                |                |                |  |  |
|-----------------------------------------|------------------------------------|----------------|----------------|----------------|--|--|
| Number of<br>APU per<br>Aircraft        | Operation<br>Hours for Each<br>LTO | Exempt Source? | Designation    | Manufacturer   |  |  |
| Allerait                                | LIO                                |                |                |                |  |  |
| 1                                       | 0.87                               | No             | GTCP 331-200ER | Honeywell Inc. |  |  |





## B.4.10.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

| Designation    | Fuel<br>Flow | voc   | SO <sub>x</sub> | NOx   | СО    | PM 10  | PM 2.5 | CO <sub>2</sub> e |
|----------------|--------------|-------|-----------------|-------|-------|--------|--------|-------------------|
| GTCP 331-200ER | 267.9        | 0.115 | 0.284           | 2.548 | 1.110 | -1.000 | -1.000 | -1.0              |

## B.4.10.4.3 Auxiliary Power Unit (APU) Formula(s)

## - Auxiliary Power Unit (APU) Emissions per Year

APU<sub>POL</sub> = APU \* OH \* LTO \* EF<sub>POL</sub> / 2000

APU<sub>POL</sub>: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)

APU: Number of Auxiliary Power Units OH: Operation Hours for Each LTO (hour)

LTO: Number of LTOs

EF<sub>POL</sub>: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons

#### **B.4.11 Aircraft**

## B.4.11.1 General Information & Timeline Assumptions

## - Add or Remove Activity from Baseline? Remove

# - Activity Location

County: Spokane

Regulatory Area(s): NOT IN A REGULATORY AREA

Activity Title: Remove 24 KC-135R Aircraft from Fairchild AFB, Washington - TGOs

#### - Activity Description:

Remove 24 KC-135R aircraft from Fairchild AFB, Washington - TGOs only

#### - Activity Start Date

Start Month: 10 Start Year: 2028

## - Activity End Date

Indefinite: Yes End Month: N/A End Year: N/A

#### - Activity Emissions:

| Pollutant       | Emissions Per Year |  |  |  |
|-----------------|--------------------|--|--|--|
|                 | (TONs)             |  |  |  |
| VOC             | -0.163561          |  |  |  |
| SO <sub>x</sub> | -3.443342          |  |  |  |
| NO <sub>x</sub> | -23.845448         |  |  |  |
| CO              | -21.216073         |  |  |  |
| PM 10           | -4.070915          |  |  |  |

| Pollutant         | Emissions Per Year |  |  |  |
|-------------------|--------------------|--|--|--|
|                   | (TONs)             |  |  |  |
| PM 2.5            | -2.027680          |  |  |  |
| Pb                | 0.000000           |  |  |  |
| NH <sub>3</sub>   | 0.000000           |  |  |  |
| CO <sub>2</sub> e | -10407.3           |  |  |  |
|                   |                    |  |  |  |

## - Activity Emissions [Flight Operations (includes Trim Test & APU) part]:





| Pollutant       | Emissions Per Year<br>(TONs) |
|-----------------|------------------------------|
| VOC             | -0.163561                    |
| SO <sub>x</sub> | -3.443342                    |
| NO <sub>x</sub> | -23.845448                   |
| CO              | -21.216073                   |
| PM 10           | -4.070915                    |

| Pollutant         | Emissions Per Year<br>(TONs) |
|-------------------|------------------------------|
| PM 2.5            | -2.027680                    |
| Pb                | 0.000000                     |
| NH <sub>3</sub>   | 0.000000                     |
| CO <sub>2</sub> e | -10407.3                     |
|                   |                              |

B.4.11.2 Aircraft & Engines

B.4.11.2.1 Aircraft & Engines Assumptions

- Aircraft & Engine

**Aircraft Designation:** KC-135R **Engine Model:** F108-CF-100

**Primary Function:** Transport - Bomber

**Aircraft has After burn:** No **Number of Engines:** 4

- Aircraft & Engine Surrogate

Is Aircraft & Engine a Surrogate? No

Original Aircraft Name: Original Engine Name:

B.4.11.2.2 Aircraft & Engines Emission Factor(s)

- Aircraft & Engine Emissions Factors (lb/1000lb fuel)

|              | Fuel<br>Flow | VOC  | SO <sub>x</sub> | NOx   | СО    | PM 10 | PM 2.5 | CO <sub>2</sub> e |
|--------------|--------------|------|-----------------|-------|-------|-------|--------|-------------------|
| Idle         | 1136.00      | 0.19 | 1.07            | 3.88  | 23.65 | 2.07  | 0.16   | 3234              |
| Approach     | 2547.00      | 0.06 | 1.07            | 5.73  | 8.57  | 1.55  | 0.76   | 3234              |
| Intermediate | 5650.00      | 0.03 | 1.07            | 11.04 | 2.32  | 0.65  | 0.36   | 3234              |
| Military     | 6458.00      | 0.03 | 1.07            | 12.05 | 0.36  | 1.59  | 1.02   | 3234              |
| After Burn   | 0.00         | 0.00 | 0.00            | 0.00  | 0.00  | 0.00  | 0.00   | 3234              |

B.4.11.3 Flight Operations

B.4.11.3.1 Flight Operations Assumptions

- Flight Operations

Number of Aircraft: 24
Number of Annual LTOs (Landing and Take-off) cycles for all Aircraft: 0
Number of Annual TGOs (Touch-and-Go) cycles for all Aircraft: 3378.5

Number of Annual Trim Test(s) per Aircraft:

- Default Settings Used: No

- Flight Operations TIMs (Time In Mode)

Taxi/Idle Out [Idle] (mins):0Takeoff [Military] (mins):0Takeoff [After Burn] (mins):0Climb Out [Intermediate] (mins):1.6Approach [Approach] (mins):7.67Taxi/Idle In [Idle] (mins):0





Per the Air Emissions Guide for Air Force Mobile Sources, the defaults values for military aircraft equipped with after burner for takeoff is 50% military power and 50% afterburner. (Exception made for F-35 where KARNES 3.2 flight profile was used)

- Trim Test

Idle (mins): 12
Approach (mins): 27
Intermediate (mins): 9
Military (mins): 12
AfterBurn (mins): 0

## B.4.11.3.2 Flight Operations Formula(s)

## - Aircraft Emissions per Mode for LTOs per Year

AEM<sub>POL</sub> = (TIM / 60) \* (FC / 1000) \* EF \* NE \* LTO / 2000

AEM<sub>POL</sub>: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

LTO: Number of Landing and Take-off Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

## - Aircraft Emissions for LTOs per Year

AELTO = AEMIDLE IN + AEMIDLE OUT + AEMAPPROACH + AEMCLIMBOUT + AEMTAKEOFF

AE<sub>LTO</sub>: Aircraft Emissions (TONs)

AEM<sub>IDLE\_IN</sub>: Aircraft Emissions for Idle-In Mode (TONs) AEM<sub>IDLE\_OUT</sub>: Aircraft Emissions for Idle-Out Mode (TONs) AEM<sub>APPROACH</sub>: Aircraft Emissions for Approach Mode (TONs) AEM<sub>CLIMBOUT</sub>: Aircraft Emissions for Climb-Out Mode (TONs) AEM<sub>TAKEOFF</sub>: Aircraft Emissions for Take-Off Mode (TONs)

## - Aircraft Emissions per Mode for TGOs per Year

 $AEM_{POL} = (TIM / 60) * (FC / 1000) * EF * NE * TGO / 2000$ 

AEM<sub>POL</sub>: Aircraft Emissions per Pollutant & Mode (TONs)

TIM: Time in Mode (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines

TGO: Number of Touch-and-Go Cycles (for all aircraft)

2000: Conversion Factor pounds to TONs

## - Aircraft Emissions for TGOs per Year

AE<sub>TGO</sub> = AEM<sub>APPROACH</sub> + AEM<sub>CLIMBOUT</sub> + AEM<sub>TAKEOFF</sub>





AE<sub>TGO</sub>: Aircraft Emissions (TONs)

AEM<sub>APPROACH</sub>: Aircraft Emissions for Approach Mode (TONs) AEM<sub>CLIMBOUT</sub>: Aircraft Emissions for Climb-Out Mode (TONs) AEM<sub>TAKEOFF</sub>: Aircraft Emissions for Take-Off Mode (TONs)

# - Aircraft Emissions per Mode for Trim per Year

AEPS<sub>POL</sub> = (TD / 60) \* (FC / 1000) \* EF \* NE \* NA \* NTT / 2000

AEPS<sub>POL</sub>: Aircraft Emissions per Pollutant & Power Setting (TONs)

TD: Test Duration (min)

60: Conversion Factor minutes to hours

FC: Fuel Flow Rate (lb/hr)

1000: Conversion Factor pounds to 1000pounds

EF: Emission Factor (lb/1000lb fuel)

NE: Number of Engines
NA: Number of Aircraft
NTT: Number of Trim Test

2000: Conversion Factor pounds to TONs

## - Aircraft Emissions for Trim per Year

AETRIM = AEPSIDLE + AEPSAPPROACH + AEPSINTERMEDIATE + AEPSMILITARY + AEPSAFTERBURN

AE<sub>TRIM</sub>: Aircraft Emissions (TONs)

AEPS<sub>IDLE</sub>: Aircraft Emissions for Idle Power Setting (TONs)

AEPS<sub>APPROACH</sub>: Aircraft Emissions for Approach Power Setting (TONs)

AEPS<sub>INTERMEDIATE</sub>: Aircraft Emissions for Intermediate Power Setting (TONs)

AEPS<sub>MILITARY</sub>: Aircraft Emissions for Military Power Setting (TONs)

AEPS<sub>AFTERBURN</sub>: Aircraft Emissions for After Burner Power Setting (TONs)

## B.4.11.4 Auxiliary Power Unit (APU)

## B.4.11.4.1 Auxiliary Power Unit (APU) Assumptions

- Default Settings Used: Yes

- Auxiliary Power Unit (APU) (default)

|  | Number of | Operation      | Exempt  | Designation | Manufacturer |  |
|--|-----------|----------------|---------|-------------|--------------|--|
|  | APU per   | Hours for Each | Source? |             |              |  |
|  | Aircraft  | LTO            |         |             |              |  |

## B.4.11.4.2 Auxiliary Power Unit (APU) Emission Factor(s)

- Auxiliary Power Unit (APU) Emission Factor (lb/hr)

| Designation | Fuel | VOC | SO <sub>x</sub> | NO <sub>x</sub> | CO | PM 10 | PM  | CO <sub>2</sub> e |
|-------------|------|-----|-----------------|-----------------|----|-------|-----|-------------------|
|             | Flow |     |                 |                 |    |       | 2.5 |                   |

# B.4.11.4.3 Auxiliary Power Unit (APU) Formula(s)

# - Auxiliary Power Unit (APU) Emissions per Year

 $APU_{POL} = APU * OH * LTO * EF_{POL} / 2000$ 

APU<sub>POL</sub>: Auxiliary Power Unit (APU) Emissions per Pollutant (TONs)

APU: Number of Auxiliary Power Units OH: Operation Hours for Each LTO (hour)





LTO: Number of LTOs

EF<sub>POL</sub>: Emission Factor for Pollutant (lb/hr) 2000: Conversion Factor pounds to tons



# MeB6



